Mostrando las entradas con la etiqueta turbojet. Mostrar todas las entradas
Mostrando las entradas con la etiqueta turbojet. Mostrar todas las entradas

viernes, 5 de septiembre de 2025

Avión experimental: Los numerosos modelos rusoviéticos (3/4)

 /k/ Aviones Episodio 93: Slavshit experimental




/K/ Planes





Lavochkin La-7R

A finales de 1944, la OKB Lavochkin recibió el encargo de adaptar el motor cohete RD-1 a su caza La-7 para que sirviera como medida provisional hasta que estuvieran disponibles los motores a reacción. Se convirtieron dos La-7, uno con el motor RD-1 y otro con el R-1KhZ, ambos con 300 kg de empuje. Los motores se montaron en la cola de los La-7, lo que requirió modificaciones en el timón para acomodarlo y un tanque de 90 litros para queroseno y 180 litros de ácido nítrico. Las pruebas de vuelo comenzaron a finales de 1944. Durante las pruebas, el motor del primer La-7 explotó en tierra en mayo de 1945. El avión superviviente sufriría una explosión en vuelo, pero aterrizó de forma segura, fue reparado y volvió al servicio a tiempo para realizar un sobrevuelo en el desfile de Tushino en agosto. 1946. Si bien el La-7R era capaz de alcanzar un breve impulso de 80 km/h, esto se produjo a costa de una menor maniobrabilidad y manejo, además de los peligros asociados con el motor cohete. Con la entrada en servicio de los turborreactores, el La-7R dejó de ser necesario, por lo que, tras el vuelo de Túshino, el programa llegó a su fin.


Los Motorjets

Al acercarse el fin de la Segunda Guerra Mundial, la URSS seguía luchando por desarrollar un motor a reacción viable, incluso mientras otras naciones comenzaban a desplegar cazas a reacción. Con la esperanza de ofrecer una solución provisional mientras se aplicaba ingeniería inversa a los motores alemanes capturados para su producción, se encargó el desarrollo de cazas a reacción. El concepto de motor a reacción era una solución bastante simple, aunque rudimentaria: utilizar un motor de pistón para impulsar los ventiladores del compresor de un avión a reacción. Equivalía, en la práctica, a un ventilador conducido con postcombustión, y seguía siendo más prometedor que las diversas propuestas de aviones propulsados ​​por cohetes, por lo que el trabajo prosiguió. Se encargó a Sukhoi y a Mikoyan Gurevich el desarrollo de sus diseños, lo que dio como resultado el Su-5 y el I-250. Finalmente, ninguna de las dos propuestas alcanzaría una producción significativa, ya que el desarrollo de los aviones a reacción finalmente se había acelerado con el inicio de las pruebas.


Mikoyan Gurevich I-250

El caza a reacción de MiG era el desgarbado I-250. Si bien su diseño era convencional, la estructura estaba dominada por los dos motores. La potencia principal provenía de un motor de pistón VK-107 de 1650 hp en el morro, con tomas de aire bajo el motor que alimentaban a un motor a reacción VRDK, que absorbía energía del motor para su funcionamiento. Debido al enorme tamaño del motor, el piloto se sentaba muy atrás en el fuselaje. A pesar del gran tamaño y la profundidad del fuselaje, la capacidad de combustible del motor a reacción era limitada: el I-250 solo podía usar el VRDK durante 10 minutos. Aunque nominalmente era un demostrador de tecnología, el I-250 estaba armado con tres cañones B-20. El primer prototipo volaría en marzo o abril de 1945 sin el VRDK instalado. Pruebas posteriores instalaron el motor a reacción, pero el motor resultó problemático.

Aunque un prototipo se perdió durante las pruebas, el I-250 se ordenó entrar en producción en julio de 1945 tras ser considerado superior al Su-5, su competidor. Se realizó un pedido de varios aviones de preproducción, pero problemas de producción retrasaron su entrega hasta mediados de 1946. A pesar de los retrasos, ese mismo febrero ya se había realizado un pedido de 50 aviones de producción bajo la designación provisional MiG-13. Las pruebas de los aviones de preproducción fueron desastrosas. Problemas con el motor impidieron su aparición prevista en Tushino en agosto de 1946, y las propias pruebas de aceptación se retrasaron debido a que las pruebas del motor VRDK se prolongaron más de lo previsto. Mientras tanto, la VVS y la PVO se habían decidido por el MiG-9 para su nuevo caza, dejando al I-250 sin operador. MiG intentó salvar el diseño presentándolo a la Aviación Naval Soviética como escolta para torpederos, lo que le permitió reanudar las pruebas en 1947. Sin embargo, este esfuerzo duró poco. En abril de 1948, el programa I-250 llegó a su fin cuando la Armada Soviética declaró que el I-250 había fallado las pruebas de aceptación.


Sukhoi Su-5

El caza a reacción de Sukhoi recibió la designación Su-5. Al igual que el I-250, el Su-5 estaba equipado con el motor M-107 de 1650 hp en el morro y un motor a reacción VRDK en la cola, lo que le daba un fuselaje amplio y profundo. El armamento consistía en un cañón de 23 mm y dos ametralladoras de 12,7 mm. Las pruebas de vuelo comenzaron en junio de 1945. Durante las pruebas, se determinó que el Su-5 era inferior al I-250. Si bien su diseño de cabina podría haber sido más favorable, el Su-5 tenía un alcance y una autonomía significativamente menores, ya que solo transportaba combustible suficiente para que el motor a reacción funcionara durante tres minutos (en comparación con los 10 minutos del I-250).


Florov Samolyot 4302/4303


Al final de la Segunda Guerra Mundial, la VVS encargó a Ilya Florov el desarrollo de un avión experimental para investigar el vuelo transónico a alta velocidad. Dado el propósito previsto, el Samolyot 4302 debía ser increíblemente compacto: el fuselaje apenas alcanzaba el tamaño del cohete piloto y el combustible. Como aún no disponía de información sobre alas en flecha, Florov optó por un diseño de alas laterales que, curiosamente, se parecía mucho al Heinkel He 162. Se desarrolló un perfil aerodinámico delgado de flujo laminar en colaboración con TsAGI para su uso en el diseño, y se proporcionó una cabina presurizada para el piloto. El primer 4302 se diseñó con tren de aterrizaje fijo, mientras que todos los aviones posteriores utilizarían un carro desechable y un patín retráctil, similar al Me 163. Las pruebas de vuelo comenzaron con planeadores sin motor en 1946, seguidas de pruebas con motor al año siguiente. Mientras tanto, el 4303, de mayor capacidad, esperaba su motor. Sin embargo, a mediados de 1947, el proyecto se canceló por completo debido al progreso de los motores a reacción. El motor previsto para el 4303 se transfirió a MiG, que aún trabajaba en su I-270 propulsado por cohetes.


DFS/Bereznyak 346

Durante la Segunda Guerra Mundial, Felix Kracht, del Instituto Alemán de Planeadores (DFS), comenzó a trabajar en un avión de investigación de alta velocidad. A diferencia de otros diseños del DFS, el 346 era una aeronave de líneas aerodinámicas con alas en flecha y un motor cohete diseñado para atravesar la barrera del sonido. El piloto debía colocarse en decúbito prono en el morro para reducir la resistencia, con la cabina presurizada y diseñada para desprenderse como cápsula de escape en caso de emergencia. Los planes preveían que el 346 fuera transportado en la parte trasera de un Do 217 hasta una altitud de despegue cómoda, momento en el que la aeronave se desprendería, encendería sus motores y ascendería hasta los 30.000 metros, alcanzando Mach 2,6. Operativamente, existían planes tentativos para utilizarlo en misiones de reconocimiento. Desafortunadamente para Kracht, el proyecto cayó en manos del Ejército Rojo al final de la guerra.

Afortunadamente, el fin de la guerra no significaría el fin del 346. El proyecto continuó bajo los soviéticos, reanudando el desarrollo en 1946. Las pruebas del túnel de viento de TsAGI revelaron varias deficiencias aerodinámicas, lo que resultó en la instalación de varias vallas alares y el alargamiento del fuselaje. El prototipo original se completó y se probó el planeo en 1946, pero no sería hasta mediados de 1951 que comenzarían los vuelos propulsados. Lanzado desde debajo del ala de un Tu-4, se descubrió que el 346 tenía problemas de estabilidad y control al acercarse a la velocidad del sonido, por lo que las pruebas se limitaron a Mach 0,9. Sin embargo, el 346 se perdería en un accidente en su tercer vuelo propulsado después de que la aeronave perdiera el control en un vuelo a alta velocidad. Aunque el piloto se eyectó con seguridad (gracias a la cápsula de escape), el accidente del prototipo puso fin al programa.


Mikoyan Gurevich I-270

Aunque los cohetes habían caído en desuso, MiG se esforzaría por producir un interceptor propulsado por cohetes al final de la Segunda Guerra Mundial. Debido al bajo rendimiento de los primeros reactores, un cohete podría, en teoría, ofrecer un rendimiento superior en altitud. Bajo la designación I-270, MiG diseñó un avión derivado en gran medida del Messerschmitt Me 263 en estrecha colaboración con TsaGI. Los problemas con los diseños de ala en flecha hicieron que MiG optara por un ala recta y delgada, mientras que los problemas previstos de estabilidad a alta velocidad llevaron a la adopción de una cola en T. El I-270 volaría por primera vez en pruebas de planeo a finales de 1946. Un segundo prototipo comenzó las pruebas propulsadas a principios del año siguiente, pero ambos prototipos pronto sufrirían daños irreparables en accidentes de aterrizaje. Para entonces, el desarrollo de los reactores progresaba con la suficiente fluidez como para que desapareciera la necesidad de un interceptor de cohetes de defensa puntual, por lo que el VVS canceló el I-270.


Cheranovsky BICh-26

Durante la Segunda Guerra Mundial, Cheranovsky dirigió su propia oficina de diseño con la intención de desarrollar un nuevo avión de alta velocidad. A través de los estudios de diseño designados como BICh-24 y -25, gradualmente se decidió por un diseño sin cola de barrido compuesto, mientras que la llegada de la propulsión a reacción hizo mucho más prácticas las velocidades máximas mucho mayores. Al final de la Segunda Guerra Mundial, Cheranovsky estaba trabajando en un novedoso diseño de caza designado como BICh-26. El BICh-26 tenía un aspecto increíblemente moderno, con una disposición sin cola de barrido compuesto. Estaba propulsado por un único turborreactor AM-5 alimentado por tomas de aire en las mejillas, dejando espacio en el morro para armamento o radar. Aún mejor, la forma del ala permitía el uso de un ala y un fuselaje gruesos y espaciosos sin comprometer el rendimiento a alta velocidad. Gracias a la extensa experimentación de Cheranovsky, se proyectó que el BICh-26 alcanzaría una velocidad máxima de Mach 1,7. Sin embargo, al final el BICh-26 nunca se hizo realidad: en 1948, la salud de Cheranovsky comenzó a empeorar y todos sus proyectos llegaron a su fin.


Bisnovat 5

Poco después de comenzar las obras del 346, Matus Bisnovat inició un proyecto independiente de alta velocidad, basado en su experiencia previa con el I-302. Con objetivos similares a los del 346, no sorprende que el diseño fuera muy similar: un fuselaje en forma de bala con alas en flecha, una cola elevada, patines de aterrizaje y protectores laterales. El piloto se sentaba en una cabina presurizada y aerodinámica, con un asiento eyectable convencional, ya que la posición boca abajo del 346 se consideraba demasiado incómoda. Sin embargo, a diferencia del 346, el Bisnovat 5 iba a utilizar un Pe-8 como portaaviones. Antes de comenzar las pruebas a gran escala, TsAGI realizaría pruebas en túnel de viento hasta Mach 1,45, allanando el camino para las pruebas de vuelo. Desafortunadamente, las cosas no salieron bien desde el principio. El primer lanzamiento de prueba sin motor provocó que el prototipo chocara contra el Pe-8 justo después de su lanzamiento, y los vuelos posteriores revelaron una estabilidad lateral deficiente, lo que finalmente provocó el accidente del primer prototipo. El segundo prototipo volaría en enero de 1949, implementando modificaciones para corregir los problemas de estabilidad. Desafortunadamente, el Bisnovat 5 nunca realizó un vuelo con motor. Resultó satisfactorio, pero los X-1 y D-558-2 estadounidenses ya habían superado la barrera del sonido, al igual que el Lavochkin La-176. La plataforma de pruebas de alta velocidad del Bisnovat 5 ya no era necesaria, por lo que, en junio de 1949, el proyecto finalizó.


Tsybin LL

En septiembre de 1945, Tsybin recibió el encargo de desarrollar nuevas formas de ala para vuelos de alta velocidad. En colaboración con TsAGI, Tsybin creó dos nuevos diseños de alas: uno convencional sin flecha y el otro con flecha hacia adelante. Estas alas se instalaron en un fuselaje desarrollado por Bereznev, equipado con un motor cohete para pruebas. El diseño de alas rectas voló por primera vez a mediados de 1947, siendo remolcado hasta la altitud de lanzamiento por un Tu-2. A finales de año, el LL fue equipado con alas en flecha hacia adelante. Estas alas representaban un cambio radical respecto a cualquier diseño anterior: presentaban una flecha de 30 grados y un diedro de 12 grados. Volaría al año siguiente, realizando más de 100 vuelos y alcanzando una velocidad máxima de Mach 0,97 sin incidentes. El proyecto proporcionó una gran cantidad de datos valiosos sobre vuelos de alta velocidad, pero la novedosa forma de ala no seguiría adelante.


Yakovlev Yak-1000

En 1950, Yakovlev recibió instrucciones de desarrollar un caza supersónico experimental basado en el turborreactor AL-5. Con la esperanza de alcanzar velocidades cercanas a Mach 2, Yakovlev siguió de cerca las recomendaciones de TsAGI para un avión compacto con un ala delta recortada. Se utilizó un tren de aterrizaje de ciclo y, a pesar del uso de puntales estabilizadores para estabilizar la aeronave en tierra, la pista del tren de aterrizaje permaneció peligrosamente estrecha. Desafortunadamente, el AL-5 sufrió retrasos a medida que avanzaba el Yak-1000, por lo que se lo sustituyó por el RD-500. Si bien esto aún permitía un rendimiento supersónico, las pérdidas de rendimiento fueron suficientes para cambiar el enfoque del programa a un avión puramente de demostración. El prototipo del Yak-1000 se completó a principios de 1951, comenzando las pruebas de rodaje en marzo. Desafortunadamente, en el segundo día de pruebas, una fuerte ráfaga de viento sacó al avión de la pista durante una prueba de rodaje a alta velocidad. Los daños resultantes del incidente dejaron en tierra al Yak-1000 mientras se reparaba el prototipo y los ingenieros trabajaban para solucionar los problemas de inestabilidad detectados durante las breves pruebas. Sin embargo, al final, los esfuerzos fueron breves: el Yak-1000 se canceló en octubre de 1951.


Mikoyan Gurevich SM-12

Con la entrada en servicio del MiG-19S, MiG se apoderó de varios ejemplares para que sirvieran como banco de pruebas para las nuevas tomas de aire de alta velocidad. Bajo la designación SM-12, el nuevo avión debía ser una conversión simple del MiG-19, conservando la mayor parte del fuselaje y las alas, así como el armamento. Los dos primeros prototipos eran poco más que un MiG-19S con una toma de aire refinada y un cono de choque. La conversión fue bastante sencilla, por lo que los primeros ejemplares despegarían en 1956. El tercer prototipo estaba equipado con motores mejorados, lo que le permitía alcanzar velocidades significativamente superiores a las de los otros dos aviones. Por ello, el SM-12 se consideró para su uso como interceptor de defensa puntual. Los prototipos posteriores recibirían la designación SM-12PM, reemplazando el armamento del MiG-19S con un radar de intercepción aérea y dos misiles K-5M de haz de luz. En 1958, MiG fue un paso más allá al incorporar un cohete propulsor en el sexto prototipo para permitir que el SM-12PM alcanzara una velocidad máxima de Mach 1,69. Sin embargo, el programa terminaría allí: se decidió fabricar el Ye-7 como MiG-21.


Mikoyan Gurevich Ye-50

Tras la selección del Ye-4 de ala delta en lugar del Ye-2 de ala en flecha para convertirse en el MiG-21, MiG tomó el prototipo del Ye-2 y lo transformó para que sirviera como banco de pruebas para diversos conceptos de interceptores. Bajo la designación Ye-50, los Ye-2 fueron equipados con un cohete propulsor S-155 en la base del alerón de cola. Otras modificaciones fueron menores, como la eliminación de uno de los tres cañones de 30 mm con los que estaban armados los prototipos. Las pruebas de vuelo comenzaron en 1956. Durante las pruebas, al menos uno de los prototipos fue modificado aún más, con un morro extendido y la eliminación de todo el armamento, mientras que otro fue sometido a una remodelación más exhaustiva con un nuevo turborreactor R-11E-300 y un gran tanque de combustible ventral. En general, las pruebas fueron satisfactorias: el Ye-50 demostró ser capaz de alcanzar Mach 2,3, y el cohete propulsor extendió el techo de vuelo a 23 km. Se consideró su uso como interceptor U-2 dedicado, pero nunca llegó a producirse.


Matveyev Turbolet

El primer diseño de plataforma VTOL a reacción de la URSS, el Turbolet, tomaría forma en la década de 1950 bajo el mando del LII (Instituto de Investigación de Vuelo). Al igual que muchos de los primeros bancos de pruebas VTOL, el Turbolet era rudimentario y poco práctico. Consistía en un gran motor de turbina montado verticalmente con un andamiaje a su alrededor para sostener un tren de aterrizaje de cuatro puntos, una cabina y toberas de reacción en los estabilizadores para la estabilización. Para proporcionar control, el flujo de aire del motor podía ventilarse hacia las cuatro toberas de los estabilizadores. Las pruebas de vuelo comenzaron en 1957, con vuelos realizados por el más destacado piloto de pruebas de helicópteros de la URSS. El alcance de las pruebas no está claro, pero el programa parece haberse desarrollado sin incidentes, proporcionando datos valiosos para un programa naciente de aviones VTOL.


Tsybin NM-1

En 1955, Tsybin fue seleccionado para desarrollar un avión de ataque/reconocimiento con estatorreactor que alcanzara Mach 3. Con el diseño final designado como RS, Tsybin recibió el encargo de crear un demostrador tecnológico a escala real con la designación NM-1. El NM-1 era una versión simplificada del diseño final, que incorporaba turborreactores AL-5 de eficacia probada en lugar de estatorreactores y estaba optimizado para cargas más ligeras. A diferencia del producto final planificado, el NM-1 despegaría por sus propios medios en lugar de ser lanzado desde un Tu-95. Sin embargo, el tren de aterrizaje seguía siendo sencillo: un carro desechable para el despegue y patines retráctiles para el aterrizaje. Al comenzar las obras del NM-1, se determinó que el RS no era capaz de cumplir con los requisitos del proyecto, por lo que se modificó, eliminando la función de ataque nuclear y adoptando la designación RSR.

El NM-1 despegó en 1959. Las pruebas se centraron en el rendimiento a baja velocidad, ya que se preveía que el diseño presentara problemas a bajas velocidades. El primer vuelo reveló que la aeronave tenía una velocidad de despegue y aterrizaje mucho mayor de lo previsto, pero por lo demás era aerodinámicamente estable. Se realizaron 32 pruebas, y el NM-1 se manejó bien. A pesar de su alta velocidad de pérdida, los pilotos de prueba informaron favorablemente sobre las características de despegue y aterrizaje, declarando que era más fácil que en un MiG o un Sukhoi. Aunque el NM-1 proporcionó datos invaluables que se aplicaron al RSR, el producto final nunca se vería. Se completaron cinco fuselajes, a la espera de motores, en 1961, cuando Nikita Khrushchev lo canceló debido a un nuevo énfasis en los misiles balísticos.


Mikoyan Gurevich Ye-8

En 1961, MiG recibió el encargo de desarrollar un sustituto del MiG-21. Tomando como base el MiG-21, MiG modificó sustancialmente la aeronave para crear el Ye-8. El Ye-8 contaba con un morro completamente rediseñado para alojar el radar Sapfir-21, lo que obligó a MiG a desplazar la entrada de aire bajo el morro. También se añadieron numerosas innovaciones, como canards de libre flotación, flaps soplados y una aleta ventral plegable. Para completar, se instaló el nuevo motor R-21F. El Ye-8 realizó su primer vuelo en abril de 1962. Ese mismo septiembre, el primer prototipo se perdió debido a una catastrófica falla del motor a Mach 1,7. Una investigación posterior del accidente reveló problemas de oscilación lateral que provocarían barrenas incontrolables, así como numerosos otros problemas técnicos. Aunque el Ye-8 había servido como un útil banco de pruebas para diversas tecnologías nuevas, tuvo que ser abandonado.


Beriev Be-1

En 1956, Bartini acudió a Beriev con una propuesta para un vehículo de efecto suelo. A Beriev le gustó la propuesta y encargó un banco de pruebas a pequeña escala para explorar las características de dicha aeronave. El banco de pruebas, denominado Be-1, consistía en un hidroavión con dos flotadores conectados al fuselaje por un ala de muy baja relación de aspecto. Paneles alares más pequeños se extendían más allá de los flotadores, y pequeños hidroplanos se colocaron debajo de estos para facilitar el despegue. Un único turborreactor RU-19, colocado sobre el fuselaje, propulsaba el diseño. El Be-1 despegó por primera vez en 1961, comenzando con vuelos desde tierra. Las pruebas de vuelo continuaron durante varios años, pasando gradualmente a vuelos sobre el agua y validando el concepto de un vehículo de efecto suelo.


Túpolev Tu-95LAL

En 1955, Myasishchev y Tupolev recibieron el encargo de iniciar el desarrollo de un bombardero de propulsión nuclear. Mientras Kuznetsov y Lyulka perfeccionaban los detalles de los motores, Tupolev procedió con un demostrador para examinar la viabilidad de utilizar un reactor nuclear aerotransportado. Se modificó un Tu-95M para esta función, adoptando la designación Tu-95LAL. Se instaló un pequeño reactor nuclear en la bodega de bombas trasera, junto con varios elementos de protección contra la radiación. El reactor no proporcionaba energía a la aeronave, ya que el Tu-95LAL estaba destinado principalmente a probar la seguridad del sistema. El reactor se encendió en 1958, lo que permitió el inicio de las pruebas en tierra, y en 1961 el Tu-95LAL realizó su primer vuelo. Los primeros vuelos se realizaron con el reactor apagado, aunque las pruebas posteriores se realizarían con un reactor en funcionamiento. Las pruebas revelaron que la protección contra la radiación era satisfactoria, por lo que se prosiguió con el trabajo en el Tu-119, que utilizaría el reactor para propulsar los dos motores internos. Sin embargo, el proyecto nunca abandonaría la mesa de dibujo: el cambio hacia misiles balísticos, así como las preocupaciones de seguridad en caso de accidente, llevaron a la cancelación del programa de bombarderos de propulsión nuclear.


Alekseev SM-1

Paralelamente al demostrador de vehículos de efecto suelo de Beriev, la Oficina de Diseño de Alekseev (OKB) había iniciado su propio programa de vehículos de efecto suelo. Desde el final de la Segunda Guerra Mundial, Alekseev había impulsado con ahínco el desarrollo de un vehículo de efecto suelo para operaciones navales costeras, y en 1960 finalmente obtuvo la aprobación para un demostrador a escala real. Designado SM-1, el avión era bastante largo, con alas en tándem de baja relación de aspecto y propulsado por un único turborreactor montado sobre el fuselaje. Una tripulación de tres o cuatro personas se alojaba en una cabina en tándem en el fuselaje. El SM-1 realizaría su primer vuelo en julio de 1961. Las pruebas iniciales resultaron deficientes, debido a su altísima velocidad de despegue y su deficiente manejo. Sin embargo, al reconstruirlo con una cola en T, se solucionaron los problemas más graves. Durante las pruebas, Alekseev organizó un viaje para el futuro ministro de Defensa, lo que brindó un gran apoyo al proyecto. Desafortunadamente, las pruebas terminaron antes de tiempo cuando el segundo prototipo resultó gravemente dañado en un incendio y el primero se estrelló en enero de 1961. Las pruebas del concepto continuarían, pero la carrera del SM-1 había terminado.


Alekseev SM-2

Tras sufrir daños en el hangar del segundo prototipo del SM-1, se reconstruyó como el SM-2 perfeccionado. Al despegar en 1962, el SM-2 se basó en las lecciones aprendidas del SM-1, utilizando un diseño más aerodinámico (en particular, en el montaje del motor). Se montaron dos motores en la aeronave: uno en la cola y otro en el morro. Mientras que el motor trasero ventilaba normalmente, el motor delantero lo hacía bajo las alas, mejorando la sustentación por efecto suelo. Sin embargo, el SM-2 seguía demostrando velocidades de despegue impracticables. Si bien representaba una mejora definitiva respecto al SM-1, el concepto aún tenía un largo camino por recorrer. Afortunadamente, una demostración exitosa ante Kruschev bastó para que Alekseev apoyara un demostrador a mayor escala.


Instituto de Aviación de Moscú MAI-62

En 1958, un equipo de estudiantes del Instituto de Aviación de Moscú comenzó a trabajar en un avión experimental sin cola, denominado MAI-62. El MAI-62 era un diseño compacto propulsado por un único motor de 80 hp montado detrás de la cabina. Si bien la configuración sin cola no era nueva, las superficies de control sí lo eran. En cada punta de ala, una superficie se extendía directamente hacia atrás, más allá del borde de fuga. Estas superficies largas y delgadas actuarían como elevones para proporcionar control. Las pruebas comenzaron en 1962. Aunque el MAI-62 presentaba problemas de sobrecalentamiento, aparentemente tuvo un rendimiento razonablemente bueno, lo que le valió al equipo de diseño sus diplomas y una medalla.


Yakovlev Yak-36 “Mano alzada”

En 1961, Yakovlev recibió el encargo de desarrollar un demostrador práctico de aviones VTOL. Mientras Yakovlev trabajaba en el fuselaje, Tumansky comenzó a adaptar el turborreactor R-27 a una variante sin postcombustión con toberas vectorizadoras de empuje. Si bien el Yak-36 resultante era más práctico que los diseños de "cama voladora" que lo precedieron, difícilmente podía considerarse práctico. Los dos turborreactores R-27-300 ocupaban la mayor parte del fuselaje y estaban ubicados sobre el centro de gravedad, lo que dejaba poco espacio para la cabina, el combustible o cualquier otro equipo de misión. Las alas y la cola parecían más bien una idea de último momento, destinadas a proporcionar espacio para las ruedas de los estabilizadores y un punto de ventilación para el aire de purga y la estabilización. De hecho, el largo auge del morro existía con el único propósito de proporcionar un puerto de soplado delantero. El alcance era extremadamente corto, de tan solo 200 millas náuticas, al igual que la carga útil: dos puntos de anclaje proporcionaban una capacidad total de 200 kg de provisiones.

Las pruebas de vuelo del Yak-36 comenzaron en enero de 1963 con estacionarios cautivos. Desde el principio, se encontraron con problemas de reingestión de gases calientes que minaban la potencia del motor, y el sistema de purga de aire, diseñado para proporcionar control en vuelo estacionario, resultó problemático. Se realizaron varias modificaciones para solucionar los problemas antes de que finalmente se pudieran realizar vuelos no cautivos (con vuelos convencionales) a mediados de 1964. El primer vuelo VTOL completo, con despegue vertical, transición a vuelo horizontal y aterrizaje vertical, tuvo que esperar hasta 1966. Al año siguiente, se presentó a Occidente en una exhibición aérea. Aunque se presentó como un avión de combate (se equipó con pods de cohetes durante demostraciones públicas) y recibió la designación OTAN ("Freehand"), no hubo una intención seria de poner en servicio el Yak-36. Su rendimiento marginal lo hizo inservible para cualquier uso práctico. Aunque el Yak-36M que lo sucedió inicialmente compartiría su designación, se transformó en un diseño completamente nuevo, adoptando el nombre Yak-38. Sin embargo, se mantuvieron elementos del programa Yak-36, en particular el sistema de eyección automática que se desarrolló, pero nunca se instaló, en el Yak-36.


Alekseev SM-¾

Tras las exitosas pruebas del SM-2, los siguientes ekranoplanos de Alekseev se basarían en el concepto de ala soplada. El SM-3 y el SM-4, de mayor tamaño, compartirían la configuración de motor en tándem de sus predecesores, pero incorporarían una tobera mejorada para el motor delantero. Un novedoso diseño de tobera distribuía los gases de escape en un área más amplia, mejorando la sustentación en una parte más extensa del ala. El SM-3 despegó en 1962 y, tras validar el diseño básico, se configuró el SM-4 a mayor escala. Las pruebas transcurrieron sin incidentes, allanando el camino para el desarrollo posterior del ekranoplano.


Alekseev SM-5

Paralelamente a los demostradores SM-3 y SM-4, Alekseev creó el SM-5. El SM-5 era un diseño más refinado, basado en experimentos previos, que sirvió como demostrador a escala reducida de lo que se convertiría en el gigantesco ekranoplano KM. El SM-5 incorporó numerosos cambios, como el desplazamiento de la cabina al extremo frontal del avión y la incorporación de las toberas especiales de soplado de alas desarrolladas en diseños anteriores. Las pruebas comenzaron en 1963 o 1964, pero la trayectoria del SM-5 se vio trágicamente truncada cuando, al parecer, se topó con una potente ráfaga de viento durante las pruebas, lo que hizo que la aeronave perdiera el control y provocara un accidente que causó la muerte de la tripulación.


Sukhoi S-22I

Aunque el Su-7B se había convertido en la columna vertebral del cuerpo de ataque de la VVS Frontal Aviation, su diseño de ala muy en flecha había resultado en una carga útil y un rendimiento generalmente bajos, especialmente en despegue y aterrizaje. Con la esperanza de mejorar la carga útil y las capacidades en pistas cortas, Sukhoi buscó la solución en alas de geometría variable. Un Su-7 se convertiría en un demostrador tecnológico, con alas completamente nuevas que incorporaban paneles de geometría variable en el exterior del tren de aterrizaje. Aunque solo las secciones más externas del ala podían cambiar su flecha, el impacto del cambio fue significativo cuando el S-22I voló por primera vez en 1966. Las capacidades de alta velocidad del Su-7 se mantuvieron, pero las pruebas revelaron que las alas oscilantes aumentaban la carga útil en un 50%, a la vez que reducían a la mitad la carrera de despegue y aterrizaje y duplicaban el alcance efectivo. El S-22I fue un éxito rotundo, allanando el camino para posteriores modificaciones del diseño que dieron lugar al Su-17.


Sukhoi T-58VD

A mediados de la década de 1960, un renovado interés en los aviones STOL dio lugar a dos conceptos divergentes. Si bien las alas de geometría variable ofrecían una solución, el reciente desarrollo de los reactores de sustentación compactos RD-36 parecía ofrecer una solución mecánicamente más sencilla. Por ello, Sukhoi convertiría el T-58D-1, el primer prototipo del Su-15, en un banco de pruebas. El T-58VD, como se le denominó, estaba equipado con tres motores RD-36-35 a lo largo del eje central del fuselaje, lo que obligó al desarrollo de una sección central del fuselaje completamente nueva. Las pruebas comenzaron en 1966, con resultados generalmente buenos. Aunque los motores no proporcionaban suficiente empuje para elevar el avión por sí solos, redujeron la velocidad de despegue en 100 km/h y las carreras de despegue y aterrizaje de 1170 m y 1000 m a 500 m y 600 m, respectivamente. Las pruebas detectaron un problema con la ubicación de los motores, lo que provocó un fuerte cabeceo, pero se solucionó dejando el motor delantero apagado para los aterrizajes. Las pruebas finalizaron en 1967 tras proporcionar datos invaluables a Sukhoi.


Alekseev SM-8

Aunque el SM-5 había fracasado catastróficamente, el desarrollo del Ekranoplan no se vio frenado. El SM-8 sería la siguiente etapa del desarrollo del KM, incorporando diversas mejoras al diseño del SM-5 para asegurar que un accidente tan catastrófico no se repitiera. El SM-8 presentaba una cola más grande con un diedro alto, así como grandes cubiertas que rodeaban las tomas de aire de los motores. Aunque era más grande que el SM-5, seguía siendo eclipsado por el KM que se construyó junto a él. Inusualmente, aunque el SM-8 se concibió como un prototipo a escala inferior del KM, comenzó a probarse junto con su primo de mayor tamaño. Las pruebas fueron bien, pero a medida que avanzaba el programa, el SM-8 quedó en el camino, eclipsado por el enorme KM.


Alekseev K. M.

La culminación de la última media década de desarrollo del ekranoplano sería el gigantesco KM. El KM fue el diseño más grande creado hasta la fecha por la Oficina de Diseño de Alekseev, y de hecho, el ekranoplano más grande de la historia. Cuatro veces más grande que el SM-8, tenía un peso máximo de despegue de 544 toneladas métricas. Mientras que los diseños anteriores dependían del empuje vectorial de un solo motor para el impulso de las alas, el KM contaba con ocho motores montados en pilones delante de las alas para el mismo propósito. En total, el leviatán tenía diez turborreactores VD-7: ocho cerca del morro y otros dos montados a media altura de la cola. El KM surcaría los cielos en 1966 con el propio Alekseev a los mandos. Concebido nominalmente como un prototipo de transporte, nunca entró en producción. En cambio, vivió su carrera como un vehículo de pruebas único. A pesar de no producirse, el KM no dejó de impresionar. Hasta el vuelo del AN-225, era el aparato volador más pesado de la historia, y con una velocidad de crucero de 232 nudos, parecía ofrecer un cómodo equilibrio entre la velocidad de un avión de transporte estratégico y la carga útil de un buque. La trayectoria del KM llegó a su fin en 1980, cuando un error del piloto provocó un accidente. Aunque no se reportaron víctimas mortales, el KM era demasiado pesado para ser rescatado, por lo que se dejó hundir.


Mikoyan Gurevich MiG-21PD

Paralelamente a los experimentos de Sukhoi con propulsores de sustentación, MiG llevaba a cabo sus propios bancos de pruebas STOL de propulsores de sustentación para un sucesor del MiG-21. Su primer experimento de este tipo sería el MiG-21PD. Se modificó un MiG-21PFM para esta función mediante la instalación de una sección de 900 mm en el centro de gravedad, equipada con dos propulsores de sustentación RD-36. La única otra modificación significativa parece ser la fijación del tren de aterrizaje. En general, la conversión fue bastante rápida y sencilla, lo que permitió que las pruebas comenzaran a mediados de 1966. Las pruebas finalizaron en 1967, pero no antes de que se presentara públicamente ante los funcionarios del Partido. Aunque el MiG-21PD no proseguiría su desarrollo, proporcionó información valiosa para el nuevo programa de cazas de MiG.


Mikoyan Gurevich Ye-23DPD/MiG-23PD

Paralelamente al MiG-21PD, MiG desarrollaba un prototipo más práctico para su sucesor, el MiG-21. Compitiendo con el Ye-23IG de ala oscilante (que finalmente se convertiría en el prototipo del MiG-23), el Ye-23DPD se desarrolló utilizando la misma tecnología de propulsión a reacción demostrada en el MiG-21PD. Se mantuvieron las mismas superficies delta de cola del MiG-21, aunque con algunas modificaciones, y se utilizaron entradas de cono de choque a ambos lados del fuselaje. La pieza central del diseño eran los dos propulsores de reacción RD-36 montados en el fuselaje y los flaps soplados para operaciones STOL. Realizaría su primer vuelo en abril de 1967, realizando pruebas comparativas con el Ye-23IG. Desafortunadamente, la carrera de pruebas del Ye-23DPD fue muy breve: el Ye-23IG de ala oscilante fue seleccionado para su desarrollo completo con bastante rapidez, y el programa de pruebas del Ye-23DPD se interrumpió antes de que se pudiera examinar realmente algo más allá de las características de despegue y aterrizaje.


Sukhoi T-6-1

Basándose en la experiencia con el T-58VD, Sukhoi seguiría el ejemplo de MiG y construiría dos prototipos rivales para su nuevo avión. Concebido como plataforma de ataque, Sukhoi desarrollaría un avión de ala alta con asientos contiguos, denominado T-6. El primer prototipo, el T-6-1, estaba equipado con un ala delta convencional y cuatro propulsores verticales, mientras que el segundo prototipo contaba con alas pivotantes. El T-6-1 superaría a su competidor en el vuelo, volando a mediados de 1967, pero acabaría perdiendo la final, ya que la propuesta de alas pivotantes se consideró más flexible. Aunque se rechazó su producción, el T-6-1 continuó demostrando su utilidad, volando hasta 1974 como banco de pruebas para diversos equipos electrónicos.


viernes, 6 de junio de 2025

US Navy/USMC: Los cazas jets aeronavales previos a Vietnam

Cómo la Armada norteamericana construyó un avión a reacción mejor

Por E.R. Johnson, Revista de Historia de la Aviación
Navy Times





Un avión a reacción F3H-2 McDonnell aterriza en la cubierta de vuelo del portaaviones Saratoga en el mar Mediterráneo. (Museo Nacional de Aviación Naval de la Armada de EE. UU.)

A veces la realidad supera la ficción, especialmente en la historia de la aviación.

Un ejemplo extraordinario ocurrió cerca de la Estación Aérea Naval North Island, cerca de San Diego, a principios de la década de 1950: mientras se realizaban pruebas de vuelo desde un portaaviones, la brida de la catapulta (dispositivo que conectaba el avión a la lanzadera de la catapulta) atascó el puntal del tren de aterrizaje delantero de un Chance Vought F7U-3 Cutlass, de modo que el tren no se retraía ni se extendía completamente.

Los repetidos esfuerzos del piloto por soltar la brida resultaron inútiles. Dado que intentar aterrizar con el puntal delantero atascado se consideró inseguro, se le indicó al piloto del Cutlass que sobrevolara la base, dirigiera el avión hacia el mar y se eyectara.

Minutos después, tras una eyección exitosa y la separación de los asientos, un tripulante de la tripulación que viajaba en un camión observó al piloto aterrizar con paracaídas de forma segura en un campo cercano.

El tripulante saltó del camión y corrió hacia el piloto. Señalando hacia arriba, exclamó: "¡Tu compañero sigue ahí arriba!".

Con una mirada confusa, el piloto dijo: "¿Compañero? No tengo ningún compañero ahí arriba".

Pero al levantar la vista, siguiendo el dedo del hombre, lo vio —su Cutlass— descendiendo y girando hacia donde estaban los dos hombres.

Ambos se quedaron paralizados mientras observaban cómo el avión seguía dando vueltas y perdiendo altitud. Al descender, el F7U-3, sin piloto, evitó chocar con la cúpula central del famoso Hotel Del Coronado por escasos metros, y momentos después aterrizó con precisión en Imperial Beach.

Los daños fueron tan leves que la aeronave fue reparada posteriormente y puesta de nuevo en servicio.



Un F7U-3 Cutlass sobrevolando Nueva Jersey en 1955. (Museo Nacional de Aviación Naval de la Armada de EE. UU.)

Cuando los aviones a reacción comenzaron a aparecer durante la Segunda Guerra Mundial, los funcionarios de la Oficina de Aeronáutica de la Armada de EE. UU. no estaban completamente seguros de que pudieran operarse con seguridad desde la cubierta de un portaaviones.

Las pruebas de desarrollo realizadas entre 1946 y 1947 con el McDonnell FD/FH-1 Phantom y el North American FJ-1 Fury demostraron que las operaciones con aviones a reacción desde portaaviones eran prácticas.

Sin embargo, en términos de rendimiento, no surgió ningún caza a reacción verdaderamente capaz de combate hasta que los Grumman F9F Panthers y los McDonnell F2H Banshees comenzaron a llegar a las unidades operativas en 1949 y 1950.

Aunque estos nuevos aviones eran considerablemente más rápidos que los aviones de hélice a los que reemplazaron, seguían sin estar a la altura de los aviones terrestres de ala en flecha (por ejemplo, el F-86 y el MiG-15) que entraron en servicio simultáneamente.

El déficit de superioridad aérea naval nunca fue tan evidente como durante la Guerra de Corea, cuando las aeronaves de la Armada y el Cuerpo de Marines se vieron obligadas a evitar el espacio aéreo dentro del alcance de los MiG merodeadores o a depender de la protección de los F-86 de la Fuerza Aérea de EE. UU.

La necesidad de cerrar la brecha de superioridad aérea planteó a la Oficina de Aeronáutica problemas sumamente complejos.

Como mínimo, cualquier nuevo caza embarcado debía ser lo suficientemente rápido como para enfrentarse a aeronaves enemigas que volaran a velocidades transónicas (más de 967 km/h a 12.148 metros) y, con el tiempo, a velocidades supersónicas (más de 1077 km/h a 12.148 metros).

Los cazas de la Armada debían estar equipados con radar para operaciones nocturnas y en cualquier condición meteorológica, y debían ser capaces de operar desde cubiertas de portaaviones con longitudes que iban desde los 259 metros (clase Essex) hasta los 274 metros (clase Midway).

Las modificaciones que mejorarían la capacidad de la flota de portaaviones para operar aviones a reacción de mayor rendimiento (es decir, cubiertas inclinadas, catapultas de vapor, etc.) aún estaban a años de distancia, y el esperado programa de "superportaaviones" de la Armada se canceló abruptamente en 1949 como medida de reducción de costos. Ningún portaaviones construido específicamente para operar aviones a reacción se uniría a la flota hasta mediados de la década de 1950.

Sin desanimarse, la Oficina de Aeronáutica y sus socios de la industria afrontaron este reto generando 11 diseños de cazas diferentes entre 1948 y 1958: ocho con nuevas designaciones de tipo (F7U, F4D, F3H, F10F, F11F, F8U, F5D y F4H) y tres más como subvariantes de tipos existentes (F9F-6, 7 y 8; F2H-3 y 4; y FJ-2, 3, 4 y 4B).

Los 11 alcanzaron la categoría de prototipos voladores y, sorprendentemente, todos, salvo dos, llegaron a operar en portaaviones, aunque en algunos casos durante poco tiempo.


Aviones de combate Vought F7U-3 "Cutlass" del Escuadrón de Cazas VF-124, durante la década de 1950. (Parte de la Colección R.L. Lawson, Naval Aviation News, Comando de Historia y Patrimonio Naval de EE. UU.)

F7U Cutlass

La gran cantidad de datos de pruebas e investigación aeronáutica recopilados en Alemania al final de la Segunda Guerra Mundial tuvo un impacto radical en el desarrollo de aeronaves militares en Estados Unidos. Diseñado para cumplir con un requisito naval de mediados de 1945 de un caza embarcado de 967 km/h, el F7U Cutlass de Chance Vought debió gran parte de su configuración única a los datos sobre aviones sin cola adquiridos de la compañía alemana Arado. Los datos sugerían que la eliminación de la cola horizontal evitaría las fuerzas extremas de morro hacia abajo que experimentan los aviones convencionales a velocidades superiores a Mach 0,75.

El bimotor XF7U-1, que voló por primera vez en septiembre de 1948, contaba con un ala de baja relación de aspecto, con una flecha de 38 grados y empenaje vertical montado en las alas a media envergadura. El control de alabeo y cabeceo se combinaba en elevones ubicados en los bordes de fuga de los paneles exteriores del ala. Para vuelos lentos, durante el despegue y la aproximación, el ala incluía grandes slats de borde de ataque de envergadura completa, pero carecía de flaps.

Propulsados ​​por dos motores Westinghouse J34, los tres XF7U-1 fueron seguidos por 14 modelos de producción del F7U-1. Tras largas pruebas, el F7U-1 se consideró generalmente inadecuado para operaciones en portaaviones debido a la escasa visibilidad del piloto durante la aproximación al aterrizaje (debido al elevado ángulo de ataque necesario a bajas velocidades aerodinámicas), las deficientes características de despegue en onda y los problemas con el gancho de detención.

El F7U-2, de características similares, fue cancelado, pero el F7U-3 mejorado voló en diciembre de 1951 con motores Westinghouse J46 más potentes y un morro rediseñado que albergaba un radar y un sistema de control de tiro para operaciones en cualquier condición meteorológica. Otras mejoras incluyeron pilones alares para tanques de combustible externos o munición aire-tierra. El armamento aire-aire estándar consistía en cuatro cañones de 20 mm. Se añadieron misiles Sparrow con sistema de haz en la versión 3M.

La Armada encargó 180 F7U-3, seguidos de 98 F7U-3M con misiles, el último entregado en 1955. Los F7U-3 y los F7U-3M sirvieron en 10 escuadrones de cazas de la flota entre 1954 y 1957, algunos de los cuales fueron redesignados como escuadrones de ataque.

Aunque resultó ser una plataforma de armas maniobrable y estable, el Cutlass subsónico se vio afectado por la necesidad de un mantenimiento excesivo, así como por una alta tasa de accidentes, y a mediados de la década de 1950, estaba obsoleto en comparación con los diseños supersónicos más nuevos que alcanzaban etapas avanzadas de desarrollo.


El caza Douglas F4D-1 "Skyray" aterrizó a bordo del portaaviones Bon Homme Richard el 30 de agosto de 1957. (Comando de Historia y Patrimonio Naval de EE. UU.)

F4D Skyray

Otro producto de la investigación alemana capturada —en esta ocasión, un Messerschmitt—, el Douglas F4D Skyray surgió de un concurso de diseño de 1947 para un caza naval de ala delta.

La configuración delta se consideró una forma de producir un avión optimizado para una alta tasa de ascenso, pero lo suficientemente rápido como para interceptar aeronaves enemigas antes de que alcanzaran sus objetivos. Sin embargo, desde el principio, el equipo de Douglas abandonó el enfoque puro de ala delta en favor de una forma en planta sin cola, con alas en flecha y una relación de aspecto extremadamente baja. En un programa relacionado, la Armada patrocinaba el desarrollo del motor J40 de Westinghouse, un turborreactor de flujo axial de 10 etapas con el que planeaba propulsar al Skyray y al menos otros dos proyectos de cazas en fase de diseño.

Cuando el programa J40 sufrió un grave retraso, el XF4D-1 realizó su primer vuelo en enero de 1951 con un motor Allison J35. Problemas con el J40 llevaron al abandono total del programa, y ​​en marzo de 1953 se decidió equipar el Skyray con el Pratt & Whitney J57, más fiable.

Aunque el primer F4D-1 equipado con el J57 voló en junio de 1954, las extensas pruebas de aceptación retrasaron la llegada de los modelos de producción a las unidades operativas hasta abril de 1956, ocho años después del primer pedido. Las entregas a las unidades de caza de la Armada y la Infantería de Marina continuaron hasta diciembre de 1958, cuando se interrumpió la producción tras la construcción de 420 F4D-1.

El Skyray fue el primer caza de la Armada capaz de superar Mach 1 en vuelo nivelado, y en 1958 estableció el récord de ascenso a la altura, alcanzando los 15.000 metros (49.212 pies) en 2 minutos y 36 segundos. También fue el primer caza naval en servir como parte del Comando de Defensa Aérea, responsable de proteger el territorio continental de Estados Unidos de ataques.

Los F4D-1 estaban armados con cuatro cañones de 20 mm, 24 cohetes no guiados de 2,75 pulgadas y dos misiles AIM-9 Sidewinder, o podían transportar hasta 1817 kg de munición aire-tierra en portaaviones. Los últimos ejemplares dejaron de estar en servicio activo a principios de 1964.


Cazas F3H-2 "Demon" del Escuadrón de Cazas 141 en vuelo el 13 de febrero de 1961. (Comando de Historia y Patrimonio Naval de EE. UU.)

F3H Demon

El Demon se concibió originalmente como respuesta a una demanda de la Marina, a mediados de 1948, de un caza diurno embarcado comparable en todos los aspectos a los cazas terrestres contemporáneos (en concreto, el North American F-86A de la Fuerza Aérea, que para entonces ya había sido probado y puesto en producción).

Tras superar a 11 competidores, McDonnell recibió un contrato para construir dos prototipos del XF3H-1 en septiembre de 1949. El F3H utilizaba una planta convencional con alas y cola en ángulo de 45 grados y, al igual que el Skyray, iba a estar propulsado por un único turborreactor Westinghouse J40. Mientras los prototipos aún estaban en construcción, la oficina añadió el requisito de que los Demons de producción se diseñaran con capacidad para todo tipo de clima, como los F3H-1N.

En lo que resultó ser un costoso error, el F3H-1N se ordenó entrar en producción incluso antes de que el primer XF3H-1 volara en agosto de 1951. Los F3H-1N equipados con J40 no solo tenían una potencia muy baja, sino que el motor resultó ser tan poco fiable que los 56 aviones finalmente tuvieron que ser inmovilizados.

En lugar de cancelar todo el programa, en 1953 se decidió sustituirlo por el motor Allison J71 (básicamente, un J35 mejorado).

El primer F3H-2N con motor J71 voló en abril de 1955, y las entregas a los escuadrones comenzaron a principios de 1956. Los -2 aparecieron en tres subvariantes: F3H-2N, armados con cuatro cañones de 20 mm y dos Sidewinder infrarrojos; F3H-3M, armados adicionalmente con Sparrows con sistema de haz; y los F3H-2, optimizados como cazas de ataque para transportar hasta 2700 kg de munición.

La producción total del F3H se detuvo a principios de 1960, tras la fabricación de 519 unidades, y los últimos ejemplares se retiraron del servicio operativo en septiembre de 1964.

El Demon, en sus versiones finales, era una buena plataforma de armas, pero debido a un período de desarrollo demasiado prolongado, fue inevitablemente superado por el F8U y el F4H.


Aviones de combate Grumman F9F-6 "Cougar" en formación sobre el Monte Fuji, Japón, el 12 de diciembre de 1954. Pertenecían al Escuadrón de Cazas 153, frente al portaaviones Yorktown. (Archivos Nacionales)

F9F Cougar

A finales de 1950, la llegada del MiG-15 a Corea, sumada a los retrasos en los programas de cazas de la Armada, impulsó a los funcionarios de la oficina a presionar para el desarrollo de un derivado del Grumman Panther con ala en flecha.

El XF9F-6 era esencialmente un fuselaje de F9F-5 adaptado a un ala y una cola horizontal, ambas con una flecha de 35 grados. El fuselaje se extendió 60 cm en el centro para permitir un mayor almacenamiento de combustible interno (en lugar de tanques de punta), y un motor Pratt & Whitney J48 mejorado aumentó el empuje en 454 kg. El trabajo avanzó rápidamente y el primer prototipo del Cougar voló en septiembre de 1951.

Durante las pruebas, el XF9F-6 demostró ser 160 km/h más rápido que el Panther, y tras solucionarse los problemas iniciales de estabilidad mediante la adición de un estabilizador y alerones para todo el vuelo, el Cougar mostró características de manejo en portaaviones superiores a la media.

Los Cougar se pusieron en producción con los nombres F9F-6 (J48) y F9F-7 (idénticos excepto por el Allison J33) y comenzaron a prestar servicio en el escuadrón en noviembre de 1952. El F9F-8, que voló por primera vez en diciembre de 1953, tenía un fuselaje alargado de 20 cm para mayor capacidad de combustible y una ampliación de 14 metros cuadrados en las alas que producía un notable borde de ataque en dientes de sierra. Posteriormente, los F9F-8 se modernizaron con sondas de reabastecimiento montadas en el morro y eran capaces de transportar misiles Sidewinder.

El F9F-8B estaba equipado con un sistema de bombardeo de baja altitud (LABS) para poder operar como caza de ataque. A mediados de la década de 1950, el Cougar era el caza más numeroso del inventario naval, pero su vida útil fue comparativamente breve: fue retirado de los escuadrones de primera línea en 1959.

Los Cougars continuaron sirviendo en las unidades de reserva de la Armada y la Infantería de Marina hasta mediados de la década de 1960. 


Los cazas North American FJ-4B "Fury" del Escuadrón de Cazas de Ataque 146 vuelan en formación el 13 de febrero de 1961. (Archivos Nacionales)

FJ Fury

A principios de 1951, las circunstancias que dieron origen al Cougar también llevaron a los funcionarios de la oficina a buscar el desarrollo de una versión navalizada del excelente F-86 Sabre de North American.

Inmediatamente después del inicio del proyecto, la Armada emitió un contrato por 300 aviones como el FJ-2, y el prototipo, básicamente un F-86E con motor J47, puntas de catapulta y un gancho de detención con armazón en V, voló en diciembre de 1951. Los FJ-2 de producción incorporaron otras mejoras, como alas plegables, un puntal de rueda de morro alargado, cuatro cañones de 20 mm, ausencia de diedro en la cola horizontal, una cubierta modificada y un tren de aterrizaje más resistente.

Al finalizar la Guerra de Corea, la producción se redujo a 200 aviones. A diferencia del F9F-6, los FJ-2 mostraron un manejo deficiente en portaaviones y, entre 1954 y 1957, solo sirvieron en seis escuadrones terrestres de la Infantería de Marina.

El trabajo en el FJ-3, que le siguió, comenzó a mediados de 1952, y el primer ejemplar voló en julio de 1952. El FJ-3 incorporaba un motor Wright J65 más potente, una toma de aire frontal más grande y modificaciones en las alas que mejoraron el manejo en portaaviones.

La entrega a los escuadrones de la flota comenzó en septiembre de 1954, y el modelo llegó a equipar 19 escuadrones de la Armada y cuatro de la Infantería de Marina. El último lote de 80 aviones se entregó como FJ-3M con Sidewinder, y su producción finalizó en agosto de 1956.

Al igual que su compañero de cuadra, el Cougar, la vida útil del FJ-3 fue corta, y todos los ejemplares se retiraron de los escuadrones operativos en 1960.

Aunque todavía pertenecía a la serie Fury, el FJ-4 de 1954 era esencialmente un fuselaje completamente nuevo. Un nuevo contorno del fuselaje permitía un 50 % más de capacidad de combustible, y una nueva ala de sección delgada (similar a la del F-100) incorporaba flaps de borde de ataque acoplados a los flaps de borde de salida para controlar la velocidad a baja velocidad. El armamento incluía cuatro cañones de 20 mm y cuatro misiles Sidewinder.

El prototipo del FJ-4 voló en octubre de 1954, y los modelos de producción comenzaron a llegar a las unidades operativas en 1955, equipando finalmente a un escuadrón de cazas de la Armada y tres de la Infantería de Marina.

El FJ-4B fue una versión dedicada al ataque terrestre, que voló por primera vez en diciembre de 1956.

Además de un ala reforzada y un sistema de bombardeo a baja altitud para armas nucleares tácticas, el FJ-4B podía transportar hasta cinco misiles aire-tierra Bullpup y tenía capacidad de reabastecimiento en vuelo.

Tras la entrega de los FJ-4B a nueve escuadrones de ataque de la Armada y tres de la Infantería de Marina, la producción cesó en mayo de 1958. La retirada gradual de los FJ-4 y los FJ-4B comenzó en 1959, y todos habían sido retirados a finales de 1962.


Los cazas McDonnell F2H-3 "Banshee" del Escuadrón de Cazas 31 sobrevuelan el mar Mediterráneo el 26 de enero de 1954. Observe las diferentes paletas de colores. Esta foto se tomó mientras la Armada cambiaba el color de sus aviones de azul a gris. (Archivos Nacionales)

F2H-3 Banshee

Los inesperados contratiempos en los programas F7U, F4D y F3H entre 1950 y 1951 llevaron a los funcionarios de la oficina a solicitar a McDonnell el desarrollo de una versión para todo tipo de clima de su Banshee bimotor de ala recta. El F2H-3, que incorporaba un fuselaje más largo, mayor superficie alar, una superficie de cola rediseñada y un sistema de radar APQ-41, voló a principios de 1952 y entró en servicio ese mismo año.

Al F2H-3 le siguió en 1953 el F2H-4, que contaba con un sistema de radar mejorado y motores J34 ligeramente mejorados. Ambos tipos equiparon 12 escuadrones de la Armada y dos de la Infantería de Marina, conformando la capacidad de cazas todo clima de la flota hasta que fueron reemplazados por los Skyray y los Demon a mediados y finales de la década de 1950.

Los últimos ejemplares fueron retirados del servicio en primera línea en 1959, y un pequeño número prestó servicio en los escuadrones de reserva de la Armada y la Infantería de Marina hasta 1961.

F10F Jaguar

El Grumman Jaguar, de barrido variable, representó un interesante intento de desarrollar un caza con buenas características de manejo tanto a alta como a baja velocidad. Basándose en datos experimentales recopilados en la década de 1940, Grumman concibió un diseño de caza a reacción con alas que podían moverse longitudinalmente de 13,5 a 42,5 grados.

Al igual que los Skyray y los Demon contemporáneos, el proyecto de Grumman se concibió en torno a un solo motor J40. La Armada, animada por el trabajo de diseño, realizó un pedido inicial de un prototipo y 30 modelos de preproducción. Sin embargo, cuando realizó su primer vuelo en mayo de 1952, el XF10F-1 se había materializado como una aeronave grande (15.900 kg de carga), altamente compleja y con malas características de vuelo.

La Armada canceló su pedido, pero el prototipo voló durante varios años en la Base Aérea Edwards para evaluar las propiedades del vuelo de geometría variable.


Un Grumman F11F-1 Tiger de la Armada de EE. UU. en vuelo, pero no el que se autoderribó. (Museo Nacional de Aviación Naval de la Armada de EE. UU.)

F11F Tiger

El Tiger se inició en 1952 como un proyecto financiado por Grumman para explorar las posibilidades de aplicar la regla de área y una sección de ala más delgada para obtener un rendimiento supersónico del Cougar.

Aunque se denominó XF9F-9, el diseño que se desarrolló en la primavera de 1953 no se parecía en nada a la serie F9F anterior: un fuselaje esbelto diseñado según la regla de área, con tomas de aire laterales desplazadas hacia adelante; alas de cuerda estrecha, montadas en los hombros, con slats y flaps de envergadura completa y alerones para el control del alabeo; tren de aterrizaje principal retraído a ras del fuselaje; y un estabilizador de vuelo continuo de montaje bajo. La potencia provenía de un motor Wright J65 con postcombustión.

El armamento consistía en cuatro cañones de 20 mm y cuatro misiles infrarrojos Sidewinder. El primer prototipo voló en julio de 1954, antes de que estuviera disponible un motor con postcombustión, pero aun así alcanzó Mach 0,9 en su primer vuelo. Una vez equipados con postcombustión, los prototipos superaron fácilmente Mach 1 en vuelo nivelado.

La Armada ordenó la producción del Tigre bajo la nueva designación F11F-1, pero las prolongadas evaluaciones en portaaviones y las modificaciones resultantes retrasaron su entrada en servicio hasta principios de 1957.

La producción cesó en enero de 1959 con la entrega del avión número 199. Los F11F-1 equiparon siete escuadrones de cazas de la Armada hasta 1961, cuando fueron retirados del servicio de primera línea y utilizados como entrenadores de transición a reactores hasta mediados de 1967.

A pesar de su breve servicio, entre 1957 y 1969, los Tigres de la Armada se hicieron familiares para miles de espectadores cuando fueron utilizados por el equipo de demostración de vuelo de los Blue Angels.

Para darle más vida al diseño, Grumman inició un proyecto en 1955 para equipar el Tigre con el General Electric J79. El F11F-1F resultante, o Super Tigre, voló en mayo de 1956 y, durante las pruebas de 1957, alcanzó una velocidad máxima de Mach 2,04 (2124 km/h) y ascendió a una altitud de 24.800 metros.

Para entonces, sin embargo, el F8U ya estaba en servicio y el F4H multifunción se encontraba en una fase avanzada de diseño. Por consiguiente, no se encargó el F11F-1F, más pequeño y de misión limitada.


El Comandante R.W. "Duke" Windsor en un F8U-1 Crusader, agosto de 1956. Fue el primer avión a reacción con equipamiento operativo en superar los 1600 km/h. (Archivos Nacionales)


F8U Crusader

En otoño de 1952, la Oficina de Aeronáutica publicó un nuevo requisito para un caza de superioridad aérea capaz de ascender hasta 25.000 pies en un minuto y acelerar a una velocidad de intercepción de Mach 1,2. En mayo de 1953, tras considerar 21 propuestas de ocho fabricantes diferentes, la oficina seleccionó la propuesta de Vought, denominada XF8U-1, como ganadora.

Diseñado en torno al motor Pratt & Whitney J57 (14.500 libras de empuje estático en postcombustión), la característica más destacada del XF8U-1 era un ala de incidencia variable, en la que toda la sección central podía elevarse en vuelo para aumentar el ángulo de incidencia en un 7 % durante los despegues y aterrizajes.

Además, en posición elevada, la curvatura del ala se incrementaba mediante alerones y draps de borde de ataque de envergadura completa, que descendían automáticamente a 25 grados. Tenía un fuselaje largo con regla de área, y la cabina estaba situada bastante adelantada, detrás de un morro que albergaba un radar de control de tiro e incorporaba una toma de aire tipo mentón debajo del radomo.

El armamento consistía en cuatro cañones de 20 mm, dos misiles Sidewinder y 32 cohetes no guiados de 2,75 pulgadas en un paquete retráctil. La Armada encargó tres prototipos a mediados de 1953, y el primer XF8U-1 voló en marzo de 1955. Las pruebas revelaron la necesidad de muy pocos cambios.

Los F8U-1 de producción comenzaron a llegar a las unidades operativas en marzo de 1957 y equiparon nueve escuadrones de cazas de la Armada y la Infantería de Marina para finales de año.

Entre 1957 y 1962, se produjeron cuatro versiones más del Crusader: el F8U-1E, con un radar de control de tiro mejorado; El F8U-2 contaba con un motor J57 mejorado, aletas ventrales en la cola para mejorar la estabilidad a alta velocidad y la capacidad de transportar dos Sidewinder adicionales; el F8U-2N incluía radar y aviónica mejorados para una mayor capacidad en cualquier condición climática y un compensador de potencia de aproximación (un sistema de estabilización computarizado que controlaba la velocidad aerodinámica durante las aproximaciones a portaaviones); y el F8U-2NE, la primera versión con una importante capacidad aire-tierra, introdujo un nuevo radar de búsqueda y control de tiro y un escáner infrarrojo, un paquete de aviónica para misiles aire-tierra Bullpup alojados en una joroba en la sección central del ala, además de capacidad para transportar ocho misiles aire-tierra no guiados Zuni y 1817 kg de bombas en soportes externos. A mediados de 1962, bajo un nuevo sistema de designación, el F8U se convirtió en el F-8 (el F8U-1 se convirtió en el F-8A; el F8U-1E en el F-8B; el F8U-2 en el F-8C; el F8U-2N en el F-8D; y el F8U-2NE en el F-8E). Para prolongar la vida útil del Crusader, se remanufacturaron 89 F-8D como el F-8H, 136 F-8E como el F-8J, 87 F-8C como el F-8K y 61 F-8B como el F-8L. Los F-8 prestaron servicio con distinción durante la Guerra de Vietnam, y el último ejemplar fue retirado del servicio activo en 1976.

En 1956, aunque la producción del Crusader ya estaba en marcha, Vought comenzó a planificar un sucesor con velocidad Mach 2, propulsado por el motor Pratt & Whitney J75. El XF8U-3 resultante, aunque tenía un parecido superficial con el F8U-1, fue en realidad un rediseño completo. El primer prototipo, que voló a mediados de 1958, fue seguido por dos prototipos más. Sin embargo, a pesar de su impresionante rendimiento (Mach 2,21, techo de combate de 60.000 pies), el XF8U-3 fue cancelado a finales de 1958 en favor del biplaza F4H-1.

La Douglas Aircraft Company construyó cuatro F5D-1 Skylancer. Fueron creados para la Armada como un caza interceptor para todo tipo de clima que nunca llegó a producirse. (Administración Nacional de Aeronáutica y del Espacio)

F5D Skylancer


El XF5D-1 se originó como el XF4D-2N en 1953; las únicas características que compartía con el Skyray eran su planta sin cola y el motor J57.

El fuselaje del XF5D, 2,4 metros más largo, se diseñó según la regla de área, y la sección del ala era considerablemente más delgada. Cuando el primer prototipo del Skylancer voló en abril de 1956, registró un aumento del 35 % en rendimiento respecto al F4D-1, pero no ofreció ninguna ventaja significativa sobre el F8U-1, que para entonces ya estaba en plena producción.

Dos prototipos y dos F5D de prueba se construyeron y utilizaron en diversos programas de pruebas militares durante la década de 1960, uno de ellos en servicio con la NASA hasta 1970.


Un caza F-4B (F4H-1) Phantom II completa una fase del proyecto "Salto de Altura" (Tiempo de Ascenso). (Archivos Nacionales)


F4H Phantom II


A finales de 1953, tras la derrota de la propuesta de McDonnell para un F3H con dos motores J65 frente al XF8U-1 de Vought, la Armada animó a la compañía a rediseñar el diseño para convertirlo en un avión de ataque para todo clima, el XAH-1. Sin embargo, poco después de que McDonnell presentara su propuesta de ataque a mediados de 1954, la Armada revisó sus requisitos de nuevo, esta vez para un interceptor biplaza para todo clima armado únicamente con misiles.

Autorizado como YF4H-1, la maqueta se completó en noviembre de 1955, y poco después se decidió sustituir los J65 por los General Electric J79, de mayor tamaño, capaces de proporcionar al avión un rendimiento de Mach 2.

Sin embargo, las pruebas en el túnel de viento indicaron posteriormente que la configuración aerodinámica planificada del YF4H sería inestable a altas velocidades y, por lo tanto, limitada en Mach.

Para corregir el problema, se le dio al estabilizador horizontal una inclinación de 23 grados y a los paneles exteriores del ala, una inclinación diedra de 12 grados, además de bordes de ataque en dientes de sierra, lo que le dio una apariencia que caracterizaría el diseño. El YF4H presentó otras innovaciones, como flaps y slats "soplados", que utilizaban aire de purga del motor para mantener el flujo de aire adherido al ala en ángulos de ataque elevados, y una combinación de flaperones y alerones para el control del alabeo.

El primer YF4H-1 voló en mayo de 1958, y las primeras pruebas de vuelo se completaron a finales de año, tras lo cual el YF4H (posteriormente llamado Phantom II) fue declarado ganador de la competición de cazas Mach 2 y se ordenó su producción a plena capacidad. Se construyeron cuarenta y cinco aviones de desarrollo con la denominación F4H-1F, y los aviones de producción posteriores se fabricaron con la denominación F4H-1.

Con el decimonoveno avión de desarrollo, se elevó la cabina, se amplió la cubierta y se añadió un radomo más grande y bulboso al morro. Las pruebas de idoneidad para portaaviones comenzaron a principios de 1960, y el modelo empezó a llegar a las unidades de entrenamiento de transición a principios de 1961, seguido de las entregas a escuadrones operativos a mediados de 1961. En 1962, el F4H-1F se convirtió en el F-4A y el F4H-1 en el F-4B.

Para 1966, 29 escuadrones de la Armada y la Infantería de Marina operaban con el F-4B. ​​Ese mismo año, el F-4B fue reemplazado en producción por el F-4J, que incorporaba aviónica y radar mejorados, motores más potentes y ruedas más grandes para permitir un mayor peso en aterrizaje.

Los Phantoms de la Armada y la Infantería de Marina se incorporaron al combate en 1965 durante la guerra de Vietnam y prestaron un amplio servicio en operaciones aire-aire y aire-tierra hasta que la participación estadounidense en el conflicto terminó en 1972.

A principios de la década de 1970, 228 F-4B se transformaron en F-4N, lo que implicó diversas mejoras electrónicas y un refuerzo estructural para prolongar su vida útil. A mediados de la década de 1970, en un programa similar, 264 F-4J se transformaron en F-4S con nueva aviónica e importantes mejoras estructurales. Los últimos F-4N y F-4S se retiraron del servicio activo de la Marina durante 1985-86, y del último escuadrón de la Marina en 1992.

La perseverancia da sus frutos

La firme determinación de la Oficina Naval de Aeronáutica y los fabricantes de aeronaves estadounidenses durante la década de 1950 finalmente dio sus frutos. Para 1960, sus esfuerzos no solo habían acortado la distancia con la Fuerza Aérea de EE. UU. en cuanto a superioridad aérea, sino que, con el F-8U y el F-4H, habían producido, posiblemente, dos de los mejores cazas versátiles del mundo.

Esto se verificó a principios de la década de 1960 cuando, ante la posibilidad de realizar operaciones de combate aéreo convencionales (no nucleares) en zonas remotas del mundo como el Sudeste Asiático, la aviación naval estaba mejor preparada que la Fuerza Aérea, que, durante el mismo período, había acumulado más de 5000 cazas de la Serie Century, rápidos pero generalmente de misión limitada.

La confirmación definitiva llegó a principios de 1962: el Departamento de Defensa informó a la cúpula de la Fuerza Aérea que su caza de próxima generación sería un diseño de la Armada: el McDonnell F4H-1.
 

 

El portaaviones Enterprise despegó el 10 de abril de 1962. Entre los aviones en cubierta se encontraban cazas McDonnell F4H-1 Phantom II, aviones de ataque North American A3J-1 Vigilante y aviones de ataque Douglas A4D-2N Skyhawk. (Archivos Nacionales)