Mostrando las entradas con la etiqueta cooperación internacional. Mostrar todas las entradas
Mostrando las entradas con la etiqueta cooperación internacional. Mostrar todas las entradas

jueves, 24 de octubre de 2024

LPD: ¿Pisco y Paita para una alianza argentina-peruana?

¿Los BAP Pisco y Paita son la puerta de entrada a la alianza argentino-peruana?






Dado los eventos que se vinieron desarrollando desde la asunción del presidente Milei, avanza raudamente una alianza global con Perú, el país más hermano de la República Argentina. Del 10 al 12 de septiembre se llevó a cabo la 20° Ronda de Conversaciones entre los Estados Mayores Conjuntos de las Fuerzas Armadas de Argentina y Perú, en Buenos Aires. Durante el encuentro, se discutieron temas como la organización operacional, actividades en la Antártida y la participación en operaciones de mantenimiento de la paz. Los representantes, el vicealmirante Dalle Nogare y el vicealmirante Cacho Morán, reafirmaron la importancia de los lazos históricos entre ambos países. Finalmente, firmaron un acta de entendimiento, consolidando la colaboración mutua entre sus fuerzas armadas.



Argentina piensa añadir a su presupuesto de defensa 2025 la cifra de 310 millones de USD para la adquisición de un buque de desembarco anfibio. Muchos especulan que la confluencia de intereses entre Argentina y Perú puede tener una bisagra con esta necesidad que puede ser proporcionada por una asociación con el astillero SIMA peruano y Tandanor. Debiera, primero, purgarse de la labor obstructora de los gremios peronistas tanto Tandanor como Astillero Río Santiago. Luego, podríamos llegar a producir bajo asistencia técnica uno de estos buques cuyos planos originales pertenecen a Corea del Sur pero que fue encargado originalmente por la Armada de Indonesia. Veamos un poco más este modelo.


Buques clase Makassar

Los Clase Makassar son una serie de buques de asalto anfibio de tipo LPD que fueron diseñados por el astillero Daesun Shipbuilding & Engineering, sita en Busan (Corea del Sur) para la Marina indonesia. Las dos primeras fueron construidas por los propios astilleros DaeSun, y los dos siguientes por la empresa PT PAL (Persero) de Indonesia. El astillero peruano SIMA Callao construye dos Makassar modificados para la Marina de Guerra de Perú, y PT PAL (Persero) otros dos para la Armada Filipina.



Indonesia hizo un pedido 150 millones de dólares estadounidenses a la empresa comercial coreana Daewoo International Corporation en diciembre de 2004 por cuatro buques de guerra a través de la línea de crédito de exportación. Los dos primeros buques de guerra en virtud del contrato se construyeron en Busan, Corea del Sur, por el propio DaeSun.



En el 2005 Daewoo International colocó un contrato de construcción naval con el astillero indonesio PT PAL (Persero) para las unidades tercera y cuarta, que los construyó y entregó a la Marina Indonesia con la asistencia técnica de Daesun.



Los LPD clase Makassar se pueden desplegar en operaciones anfibias o como transporte de equipos, carga y personal militar. Los barcos también se pueden utilizar en las operaciones humanitarias y desastres naturales.



Los dos primeros barcos se basan en la clase LPD Tanjung Dalpele. Las unidades tercera y cuarta se modificaron al añadir sistemas de mando y control, con un cañón de 57 mm y sistemas de defensa antiaérea. El diseño también incorporó tecnología semi-stealth.



Todos los LPD están equipadas con sistemas de información de combate y sistemas de comunicación para operar incorporado a un grupo de buques de guerra. Los barcos están armados para proteger el desembarco de tropas, vehículos de combate y helicópteros.



Los KRI Makassar y Surabaya tienen una longitud de 122 metros, ancho de 22 metros y calado de 4,9m. Los buques restantes son de 3 m más largos que los fabricados en Corea. El desplazamiento de la clase Makassar es de 7300 t.


LPD Clase Makassar
Datos generales
Astillero • DaeSun Shipbuilding
• SIMA Perú S.A.
• PT PAL
Países en servicio Armada de Indonesia
Armada filipina
Marina de Guerra del Perú
Tipo LPD
Estadísticas
Clase anterior Clase Tanjung Dalpele
Características de la clase
Desplazamiento • 7300 t estándar
• 11 894 t a plena carga
Eslora 122 m
Manga 22 m
Calado 4,9 m
Armamento • 1 cañón Bofors SAK40 mm/70
• 2 cañones Oerlikon de 20 mm
• 2 lanzamisiles Mistral Simbad
Propulsión CODAD
• 2 motores diésel MAN B&W 8L28/32A
• 2 hélices
Potencia 2666 BHP/1960 kW@ 775 RPM
Velocidad • Máxima: 14 nudos
• Económica: 12 nudos
Autonomía +45 días
Tripulación 107
Tropas 400
capacidad hasta 507​• Económica: 12 nudos
Capacidad 13 vehículos de infantería​
Aeronaves 2 A 3 helicópteros Mil Mi-17
Equipamiento de las aeronaves hangar para 2 helicópteros

Los buques Pisco y Paita son naves multipropósito de la Marina de Guerra del Perú, diseñadas para cumplir funciones de transporte logístico y operaciones anfibias. A continuación, te los describo en detalle:

BAP Pisco (AMP-156)

El BAP Pisco es un buque de desembarco anfibio (LPD, Landing Platform Dock) de la clase Paita, construido por los astilleros del SIMA (Servicios Industriales de la Marina) en el Perú. Fue lanzado al mar en 2017 y comisionado en 2018. El Pisco tiene las siguientes características:

  • Desplazamiento: Aproximadamente 11,400 toneladas a plena carga.
  • Dimensiones: 122 metros de eslora, 22 metros de manga.
  • Capacidades: Puede transportar hasta 450 tropas, 24 vehículos blindados y tiene capacidad para helicópteros medianos (como el MI-17), ya que cuenta con una cubierta de vuelo y hangar.
  • Propulsión: Equipado con motores diésel que le permiten alcanzar una velocidad de crucero de 16.5 nudos.
  • Misiones: Está diseñado para llevar a cabo una amplia gama de operaciones, desde desembarcos anfibios hasta asistencia humanitaria en situaciones de desastre natural, transporte de suministros y evacuaciones. También cuenta con instalaciones médicas para apoyo en misiones de ayuda humanitaria.

¿Qué roles podría cumplir este buque en la ARA?

Un buque de la clase Makassar podría desempeñar varios roles importantes en la Armada Argentina, aprovechando su versatilidad y capacidad de operar en diversas misiones. Algunos de los roles más destacados serían:

  1. Operaciones anfibias: Los buques clase Makassar están diseñados para el desembarco de tropas, vehículos blindados y helicópteros, lo que los convierte en una herramienta esencial para operaciones anfibias. La Armada Argentina podría utilizarlos para proyectar fuerzas en áreas costeras, islas o regiones de difícil acceso en caso de conflictos o despliegues de tropas.

  2. Respuesta a desastres naturales: Dada su capacidad de transportar grandes cantidades de suministros y personal, los Makassar serían ideales para misiones humanitarias y de socorro en desastres, como inundaciones o terremotos, permitiendo el rápido despliegue de equipos médicos, personal de rescate y suministros a áreas afectadas.

  3. Proyección de poder y presencia naval: Un buque de esta clase puede aumentar significativamente la capacidad de la Armada Argentina para mantener una presencia naval en áreas de interés estratégico, como el Atlántico Sur o en operaciones de paz, contribuyendo a la disuasión y al mantenimiento de la soberanía.

  4. Apoyo logístico: Los Makassar podrían cumplir un rol logístico vital, transportando equipos, vehículos y suministros entre bases navales o para el reabastecimiento de otras unidades en operaciones prolongadas.

En resumen, un buque de la clase Makassar ofrecería a la Armada Argentina una plataforma multifuncional para operaciones anfibias, logísticas, humanitarias y de presencia estratégica, fortaleciendo su capacidad de proyección en diferentes escenarios.

¡Firmen nomás el pedido!



BAP Paita (AMP-157)

El BAP Paita es una nave gemela del Pisco, con especificaciones prácticamente idénticas. Fue construida también por el SIMA y lanzada al mar en 2020. Tiene las siguientes características:

  • Desplazamiento: Similar al BAP Pisco, alrededor de 11,400 toneladas.
  • Dimensiones: 122 metros de eslora y 22 metros de manga.
  • Capacidades: Al igual que su gemelo, puede transportar tropas, vehículos, helicópteros, y está equipado con instalaciones médicas, lo que lo convierte en un recurso versátil tanto para operaciones militares como de asistencia humanitaria.
  • Propulsión: Sistemas de propulsión diésel que le permiten alcanzar velocidades similares a las del Pisco.
  • Misiones: El Paita está diseñado para operaciones anfibias, apoyo logístico, y evacuación médica, siendo fundamental en la proyección de poder y en las misiones de ayuda de la Marina peruana.


Ambos buques representan un importante avance en la capacidad anfibia y logística de la Marina de Guerra del Perú, ya que pueden realizar operaciones estratégicas tanto en tiempos de paz como de conflicto, y responder rápidamente a situaciones de emergencia en la región.

Tanto el BAP Pisco como el BAP Paita son buques de desembarco anfibio multipropósito diseñados principalmente para transporte logístico y operaciones anfibias, por lo que su armamento está enfocado en la defensa más que en el combate ofensivo. Aquí te detallo su armamento típico:

  1. Cañones de 40 mm: Estos buques están equipados con cañones automáticos Breda-Bofors de 40 mm L/70, que son armas antiaéreas y de superficie, capaces de disparar a objetivos aéreos y navales a distancias medianas.

  2. Ametralladoras de 12.7 mm (.50): Cuentan con varias ametralladoras Browning M2 de calibre 12.7 mm, usadas principalmente para la defensa cercana contra embarcaciones rápidas, pequeñas aeronaves, o para protección durante las operaciones de desembarco.

  3. Lanzadores de señuelos (Chaff/Flare): Estos sistemas son utilizados para contramedidas electrónicas, lanzando señuelos para desviar misiles guiados hacia los señuelos en lugar de impactar el buque.

El BAP Pisco y el BAP Paita no están fuertemente armados para el combate directo, ya que su función principal es logística y de apoyo anfibio. Sin embargo, sus sistemas defensivos les permiten operar en entornos potencialmente hostiles y protegerse contra amenazas de menor escala. Además, el hecho de que puedan transportar helicópteros agrega una capacidad adicional para operaciones de vigilancia y apoyo, que podría incluir misiones con helicópteros armados, dependiendo del equipamiento.



martes, 3 de septiembre de 2024

MLRS: Sistemas similares al HIMARS ofrecidos en el mercado


Sistema de cohetes múltiples dirigidos

Esteban McLaren para FDRA



En los últimos 20 años, los sistemas de lanzacohetes múltiples (MRLS, por sus siglas en inglés) han experimentado una evolución significativa tanto en términos de tecnología como de su aplicación en el campo de batalla. Estos cambios han sido impulsados por la necesidad de mayor precisión, movilidad y letalidad en un entorno de combate cada vez más complejo y tecnológicamente avanzado.

Durante la Guerra Fría, los MRLS eran fundamentalmente sistemas de saturación, diseñados para lanzar una gran cantidad de cohetes no guiados contra áreas amplias, con el objetivo de destruir o desorganizar formaciones enemigas. Sin embargo, con el final de la Guerra Fría y los conflictos más recientes que han tendido a ser asimétricos y urbanos, la demanda de precisión y la reducción de daños colaterales se convirtió en una prioridad.

Uno de los cambios más importantes ha sido la transición de cohetes no guiados a municiones guiadas de precisión. El desarrollo del GMLRS (Guided Multiple Launch Rocket System) por parte de Estados Unidos y sus aliados ha sido un avance clave en esta evolución. Introducido en la década de 2000, el GMLRS ofrece precisión a larga distancia, con un error circular probable (CEP) de menos de 10 metros, en comparación con las áreas amplias que cubrían los cohetes no guiados de generaciones anteriores. Esta precisión ha permitido a los MRLS ser utilizados en entornos urbanos y contra objetivos específicos sin el riesgo de daños colaterales significativos.

La movilidad también ha sido un área de enfoque. Sistemas como el HIMARS (High Mobility Artillery Rocket System) han reducido significativamente el peso y tamaño en comparación con sus predecesores, como el M270 MLRS. HIMARS está montado en un camión y es capaz de ser transportado por aviones C-130, lo que le otorga una movilidad estratégica que sus antecesores no tenían. Esta movilidad permite a las fuerzas desplegar el sistema rápidamente en áreas de conflicto y reposicionarlo fácilmente, aumentando la capacidad de supervivencia y flexibilidad operativa.

Además, la integración de tecnologías digitales y sistemas de comando y control ha transformado la forma en que se operan los MRLS. Los sistemas modernos ahora están conectados a redes de datos en tiempo real, lo que permite una coordinación más eficiente con otros elementos de combate, como aviones, drones y unidades de inteligencia. Esto ha permitido a las fuerzas armadas utilizar MRLS como parte de una estrategia centrada en la red, donde los datos recopilados por diversas fuentes se integran para proporcionar una imagen más clara del campo de batalla y permitir decisiones más rápidas y precisas.

La experiencia en combate también ha moldeado el desarrollo de los MRLS. Conflictos recientes, como las guerras en Irak y Afganistán, así como la intervención en Siria, han demostrado la importancia de los sistemas de lanzacohetes en operaciones de contrainsurgencia y en la destrucción de infraestructuras clave. En estos entornos, la precisión del GMLRS y la movilidad del HIMARS han sido especialmente valoradas. La guerra en Ucrania ha subrayado aún más la eficacia de estos sistemas en el combate moderno, donde HIMARS ha jugado un papel crucial en las ofensivas ucranianas contra las fuerzas rusas, destacando su capacidad para cambiar el equilibrio en un conflicto de alta intensidad.

En resumen, los últimos 20 años han visto una transformación significativa en los MRLS, con avances tecnológicos que han aumentado su precisión, movilidad y conectividad. Estos cambios han permitido a estos sistemas adaptarse a los desafíos de la guerra moderna, demostrando ser herramientas críticas en conflictos de diferentes tipos y escalas.


HIMARS y sus similares

El sistema HIMARS (High Mobility Artillery Rocket System) es un lanzador móvil diseñado para disparar cohetes y misiles guiados de precisión. Debido a su éxito en operaciones recientes, hay varios sistemas de misiles en el mercado occidental que comparten características similares, como movilidad, precisión y capacidad de lanzar múltiples tipos de municiones. A continuación se presentan algunos de ellos:

1. M270 MLRS (Multiple Launch Rocket System)

  • País de origen: Estados Unidos
  • Características similares: El M270 es el precursor del HIMARS y comparte muchas características, incluyendo la capacidad de lanzar cohetes y misiles guiados de precisión. A diferencia del HIMARS, el M270 tiene una configuración de orugas, lo que lo hace menos móvil, pero puede llevar el doble de municiones (dos cápsulas en lugar de una).
  • Capacidades: Puede lanzar hasta 12 cohetes o 2 misiles ATACMS.





2.  JFS-M (Rheinmetall)

  • País de origen: Alemania
  • Características similares: El sistema Lynx es un lanzacohetes múltiple modular que puede adaptarse para lanzar diferentes tipos de municiones, incluidas las de precisión. Se destaca por su alta movilidad y versatilidad, lo que lo hace comparable al HIMARS en términos de capacidad operativa.
  • Capacidades: Puede disparar una variedad de cohetes y misiles, dependiendo de la configuración.







3. LAROM

  • País de origen: Rumania
  • Características similares: El sistema LAROM es un lanzador múltiple de cohetes montado en un camión, diseñado para ser altamente móvil y versátil. Puede utilizar municiones de 122 mm y 160 mm, lo que lo hace comparable en ciertos aspectos al HIMARS, aunque con un enfoque en la saturación de área más que en la precisión individual.
  • Capacidades: Puede disparar hasta 20 cohetes de 122 mm o 26 de 160 mm.





4. Astros II

  • País de origen: Brasil
  • Características similares: El sistema Astros II es un lanzacohetes múltiple móvil y modular, que puede disparar una variedad de cohetes y misiles, incluidos los guiados de precisión. Es comparable al HIMARS en términos de movilidad y versatilidad.
  • Capacidades: Puede disparar cohetes de diferentes calibres, desde 127 mm hasta 300 mm, y misiles de alcance más largo.





5. PULS (Precise & Universal Launching System)

  • País de origen: Israel (Elbit Systems)
  • Características similares: El PULS es un sistema lanzacohetes múltiple que puede disparar una amplia gama de municiones, incluyendo cohetes y misiles guiados de precisión. Es altamente móvil y puede adaptarse a diferentes plataformas, lo que lo hace comparable al HIMARS en términos de flexibilidad operativa.
  • Capacidades: Puede disparar cohetes de 122 mm, 160 mm, 300 mm y misiles tácticos de largo alcance.





6. MARS II (MLRS Improved)

  • País de origen: Consorcio europeo (Alemania, Francia, Italia)
  • Características similares: El MARS II es una versión mejorada del M270 MLRS, con sistemas de control de fuego avanzados y la capacidad de disparar municiones de precisión como los cohetes GMLRS (Guided Multiple Launch Rocket System). Aunque más pesado que el HIMARS, ofrece capacidades similares en términos de precisión y versatilidad.
  • Capacidades: Puede lanzar cohetes GMLRS y misiles ATACMS.



7. Lanceur Multiple de Roquettes (LMR)

  • País de origen: Francia
  • Características similares: El LMR es un sistema de lanzacohetes múltiple que puede ser comparado con el HIMARS por su capacidad de lanzar cohetes de manera precisa y su diseño móvil. Está diseñado para lanzar cohetes de diferentes calibres, incluyendo versiones guiadas.
  • Capacidades: Puede disparar hasta 40 cohetes de 122 mm o cohetes más grandes, dependiendo de la configuración.


 

8. K239 Chunmoo

  • País de origen: Corea del Sur
  • Desarrollado por: Hanwha Defense
  • Características similares al HIMARS:
    • Movilidad: El K239 Chunmoo es un sistema montado sobre un camión, lo que le otorga alta movilidad y flexibilidad en el campo de batalla, similar al HIMARS.
    • Capacidad modular: El sistema puede disparar una variedad de cohetes y misiles, lo que le permite ser altamente adaptable a diferentes misiones. Está diseñado para lanzar cohetes de 130 mm, 227 mm y misiles guiados de 239 mm, lo cual lo hace muy versátil.
    • Precisión: Al igual que el HIMARS, el Chunmoo puede utilizar municiones guiadas, como el misil de 239 mm, que está equipado con un sistema de guía preciso, similar al GMLRS (Guided Multiple Launch Rocket System) utilizado por el HIMARS.
    • Capacidades: El K239 puede llevar hasta dos cápsulas con una combinación de cohetes y misiles, permitiendo disparar hasta 12 cohetes de 239 mm o 20 cohetes de 130 mm, según la configuración.
    • Interoperabilidad: Se ha diseñado para ser interoperable con otras plataformas de defensa de Corea del Sur y puede integrarse en una red de combate centrada en la red.


 

Importancia del K239 Chunmoo:

El K239 Chunmoo es un componente clave en la estrategia de defensa de Corea del Sur, especialmente en el contexto de la península coreana, donde la movilidad rápida y la capacidad de lanzar ataques de precisión son cruciales debido a la proximidad del territorio enemigo. La capacidad de disparar una variedad de municiones le proporciona una gran flexibilidad operativa, similar a lo que ofrece el HIMARS a las fuerzas estadounidenses y sus aliados.

En resumen, el K239 Chunmoo es la contraparte surcoreana más cercana al HIMARS, destacándose por su movilidad, modularidad y capacidad para disparar municiones guiadas con precisión.

Estos sistemas ofrecen capacidades comparables al HIMARS, especialmente en términos de movilidad, precisión y la posibilidad de lanzar una variedad de municiones guiadas de precisión. Cada uno tiene sus particularidades, y la elección de un sistema sobre otro depende de las necesidades operativas específicas y del entorno en el que se vayan a desplegar.


Resumen

Aquí te presento una tabla que resume las características de varios sistemas de lanzacohetes múltiples similares al HIMARS, ordenados por costo por unidad, desde el más barato al más caro. Incluye el sistema, país de origen, calibres de cohetes disponibles, máximo alcance y costo aproximado por unidad.

SistemaPaís de origenCalibre de cohetes (mm)Máximo alcance (km)Costo aproximado por unidad (USD)
Astros IIBrasil127, 180, 30090$10 millones
LAROMRumania122, 16040$12 millones
K239 ChunmooCorea del Sur130, 227, 239160$13 millones
PULSIsrael122, 160, 306300$13-14 millones
Lynx (Rheinmetall)Alemania122, 227, 300300$14 millones
M270 MLRSEstados Unidos227300$15 millones
MARS IIAlemania, Francia, Italia227300$16 millones
HIMARSEstados Unidos227, 300300$17 millones

Notas:

  • Costo aproximado por unidad: Los costos indicados son aproximados y pueden variar dependiendo de las condiciones del contrato, la configuración específica del sistema, la cantidad adquirida y los acuerdos de soporte y mantenimiento.
  • Calibre de cohetes: Se refiere a los diferentes tipos de municiones que puede disparar cada sistema, lo cual afecta la versatilidad de los mismos.
  • Máximo alcance: Este valor indica el alcance máximo que puede alcanzar el sistema con el tipo de cohete o misil de mayor alcance disponible.
  • Origen: País o países responsables del desarrollo y producción del sistema.


viernes, 1 de diciembre de 2023

UCAV: Diseños alemanes e italianos

La génesis de un UCAV europeo



HiTech Web

UKF (Unbemanntes Kampf Flugzeug) - Luft Angriffs RPV


Las primeras ideas para la construcción de un dron de ataque controlado remotamente aparecieron en Alemania (occidental) ya a principios de los años setenta. En 1972, a instancias de los Ministerios de Defensa, Finanzas y Tecnología, los tres principales fabricantes de equipos aeronáuticos llevaron a cabo un estudio de varios meses sobre la viabilidad y viabilidad de dicho medio. Mientras Dornier y VFW Fokker decidieron colaborar en experimentos con un biplaza Fiat G.91T modificado, MBB tomó una dirección diferente y exploró las posibilidades de las máquinas no tripuladas controladas desde una estación de control voladora. El trabajo se llevó a cabo en el marco de los programas KEL y ZTL, pero a veces también se puede encontrar el nombre Unbemanntes Kampf Flugzeug.



MBB UCAS vehículo aéreo de combate no tripulado pilotado de forma remota

Ya desde el principio quedó claro que un vehículo aéreo de combate no tripulado sería demasiado complejo y difícil de desarrollar, por lo que la elección recayó en un avión de ataque contra objetivos terrestres. Los principales desafíos técnicos incluyeron el vuelo de aproximación autónomo, la identificación de objetivos, el ataque con armas y un enlace de datos a prueba de manipulaciones con el operador en tierra. Inicialmente, las pruebas de vuelo debían realizarse con la ayuda del mencionado vehículo biplaza G.91T, que debía llevar un maletín AEG Telefunken con una cámara de televisión, un sistema FLIR, un sistema de estabilización en dos ejes y un transmisor de vídeo. el colgador debajo del ala. Los objetivos potenciales debían ser detectados e identificados por sus emisiones infrarrojas. Para la siguiente fase ya se ha diseñado un avión de ataque no tripulado completo con un peso de unas dos toneladas, de las cuales 500 kg eran misiles tierra-aire o bombas. La propulsión la proporcionaba un motor a reacción situado en una góndola encima del casco, mientras que se suponía que se alcanzaría una velocidad de Mach 0,9 a una altitud de 100 metros y un radio de acción de unos 300 km. El diseño del VFW Fokker presentaba un peso de despegue de 2.700 kg y el armamento estaba semiempotrado en la parte inferior del fuselaje alrededor del centro de gravedad.



VFW Fokker UAV armado pilotado a distancia alemán


La tarea principal de la herramienta era atacar objetivos fuertemente defendidos y llevar a cabo las misiones más arriesgadas, preparando así el terreno para un ataque posterior de los clásicos bombarderos pilotados. Los diseñadores diseñaron tres niveles de sofisticación de sistemas de control y sensores. La versión básica del avión debía tener un sistema de control simple para mantener un nivel de vuelo bajo en una ruta preprogramada, un radar de comparación y seguimiento del terreno Tercom y estar armado con una bomba de fragmentación BL.755 o Rockeye. Debía despegar y aterrizar con ayuda de un tren de aterrizaje retráctil en una pista de aeropuerto clásica, gracias a lo cual se podían utilizar los sistemas de microondas Setag o Mitag para el aterrizaje automático. En aquella época, la formación se iba a realizar de forma muy progresiva únicamente en simuladores. Para la máquina con el equipamiento de la segunda etapa ya estaba previsto un sistema de sensores Sevas con un detector FLIR y un láser de puntería. El operador debía guiar el dispositivo hasta la zona de combate y luego buscar de forma autónoma sus objetivos y atacarlos sin intervención externa. Alternativamente, la programación debía permitir la búsqueda de objetivos marcados por un dispositivo de localización terrestre. Sólo el avión con la última tercera etapa del equipamiento debía tener una transmisión de vídeo en vivo de imágenes estáticas al centro de control en tierra, una vez que el sistema Sevas encontrara un objetivo adecuado. En base a ello, el operador evaluaría la situación y daría al recurso una orden para atacar o ignorar. Sin embargo, incluso en este caso no tendría la posibilidad de interferir activamente en el control durante el vuelo.


VFW Fokker UAV armado piloto remoto alemán UCAV

El avión también podría equiparse con un sistema pasivo contra la exposición al radar enemigo para que pueda controlar el despliegue de baterías antiaéreas del tipo SAM. Debido a la baja frecuencia de actualización de la imagen transmitida, se esperaba utilizar la banda HF, o incluso inferior, lo que eliminaría la necesidad de tener un medio en el alcance visual, utilizar un centro de transmisión y comando aéreo, o reducir efectivamente la probabilidad. de interferencia de la defensa antiaérea enemiga. Los estudios de la empresa Dornier, realizados bajo la bandera de la organización de la OTAN AGARD (Grupo Asesor para la Investigación y el Desarrollo Aeroespacial), crearon una máquina muy simple y funcionalmente resuelta. La electrónica y el sistema de guía estaban ubicados en la parte delantera, la parte central del fuselaje estaba ocupada desde abajo por el compartimiento de bombas y desde arriba por el tanque de combustible con el larguero del ala principal, y encima de ellos se colocó un motor a reacción en una góndola separada. La parte trasera estaba ocupada por superficies de cola combinadas en forma de mariposa que daban sombra parcialmente a la boquilla. Para garantizar un espacio interno suficientemente grande e ininterrumpido para el armamento, incluso el tren de aterrizaje principal se trasladó a las cubiertas exteriores que sobresalían detrás del ala. El concepto general de la herramienta difícilmente puede ocultar su parentesco ideológico con por el posterior dron EADS Barracuda. Se planeó un programa de desarrollo durante varios años, que comenzó alrededor de 1979, pero finalmente no se materializó y los estudios no continuaron.





EADS Barracuda


A finales de los años 90, el consorcio europeo EADS también empezó a ocuparse de prometedores vehículos de combate no tripulados, al darse cuenta de que en el nuevo milenio los aviones no tripulados serían una tendencia natural e inevitable. No es sorprendente que los trabajos iniciales siguieran el programa del UKF de los años setenta. El resultado fue una plataforma genérica básica, que posteriormente fue modificada según la naturaleza prevista de las misiones diseñadas. Ya al ​​principio cristalizaron dos posibles posibilidades de uso, concretamente en forma de un vehículo de combate no tripulado de la categoría UCAV y un medio desarmado de reconocimiento del territorio defendido URAV (Unmanned Reconnaissacne Air Vehicle). Este último debía tener una longitud de 5,5 metros, una envergadura de 4,1 metros y un peso máximo de despegue de 1.460 kilogramos.




El avión de combate no tripulado más grande era considerablemente más pesado, con un peso máximo de despegue de unas cinco toneladas. Se incorporaron al diseño varias tecnologías avanzadas para reducir la probabilidad de detección por parte del enemigo, que se desarrollaron durante los programas Lampyridae y FTTU. El vehículo fue diseñado para ataques de precisión contra objetivos terrestres en un área con fuertes defensas antiaéreas, por lo que llevaba municiones guiadas con precisión en el compartimiento de bombas interno. La propulsión la proporcionaba un motor a reacción con una entrada de aire sobre el casco y una boquilla vectorial.




El trabajo intensivo en el demostrador de vuelo, que recibió el nombre de Barracuda, comenzó bajo estricto secreto en 2003 en los centros de EADS en Manching y Ausburg, Alemania, y en la sucursal española en Getafe. Su principal objetivo era verificar el uso de diversas tecnologías modernas en vehículos no tripulados, como la aviónica modular autónoma de arquitectura abierta, y fue el demostrador de vehículos no tripulados más grande construido en Europa hasta ese momento. El desarrollo fue financiado con recursos internos de EADS y la dirección del proyecto estuvo a cargo del Dr. Peter Hunkel. Para reducir costes, en la producción del prototipo se utilizaron piezas de avión ya existentes o, especialmente en el caso de la electrónica, componentes disponibles comercialmente.



El vehículo resultante tenía 8,25 metros de largo y una envergadura de 7,22 metros. Con su peso de despegue de 3,25 toneladas (de las cuales 650 kg son de combustible y 300 kg de carga útil), se sitúa en la misma categoría que el Boeing X-45A estadounidense. Como se trataba sólo de un demostrador tecnológico que debía probar nuevas tecnologías en vuelo manteniendo un presupuesto razonable, toda la construcción se simplificó enormemente. En comparación con el considerado avión de combate no tripulado en serie, el demostrador tenía un ala modificada y un par de superficies de cola inclinadas verticales y horizontales. El ala del plano medio, fabricada en la sucursal de Getafe, se fijó al fuselaje de una manera muy inteligente en una ubicación que minimizaba los valores RCS y podía retirarse con relativa facilidad para facilitar el transporte. El casco estaba hecho de compuestos de carbono de gran superficie, gracias a lo cual fue posible ahorrar parte del peso y simplificar enormemente el montaje.




El control estaba a cargo de un sistema de control de electroimpulsos triplemente respaldado. Aparte del tren de aterrizaje retráctil de tipo delantero, el avión no tenía ningún otro sistema hidráulico y todo estaba controlado por mecanismos electromecánicos. La propulsión fue proporcionada por un motor a reacción MTU/Pratt and Whitney Canada JT15D 5C con un empuje de 14 kN y una tobera circular sin modificar y sin posibilidad de vectorización. La entrada de aire no ajustable estaba ubicada en la parte superior del fuselaje. Detrás de la pata delantera del tren de aterrizaje se encontraba un eje para la carga útil, compuesto principalmente por sensores electroópticos e infrarrojos, un marcador láser de objetivos, un dispositivo para detectar ondas electromagnéticas o un radar de tipo SAR. Si era necesario, también era posible montar un soporte externo para equipos de combate o sensores. El avión debía estar equipado con un dispositivo para la transmisión secreta de datos a alta velocidad en tiempo real según el estándar Link 16. El prototipo se completó a principios de 2006 y poco después completó sus pruebas en tierra y en rodaje en la base de Manching. Allí fueron tomadas sus primeras fotografías no oficiales, que también llegaron a los medios.



Posteriormente fue trasladado a la base española de San Javier, donde el 2 de abril realizó su primer vuelo de veinte minutos siguiendo una ruta preprogramada. Aunque todo el vuelo estuvo bajo el escrutinio de los operadores en el centro de tierra, fue completamente autónomo desde el despegue hasta el aterrizaje. Vale la pena señalar que en la versión básica del Barracuda Spiral 0, el operador no tenía un joystick estándar ni una serie de botones con varias funciones a su disposición, porque controlaba todo el avión solo ingresando aproximadamente diez comandos acumulativos, como despegar, rodar o permanecer en un área de vuelo predefinida. La primera información oficial sobre la existencia del aparato no se hizo pública hasta el 11 de mayo de 2006 en un comunicado de prensa del consorcio EADS, y una semana después el demostrador pudo ser visto en directo por los visitantes del salón aeronáutico ILA.




El plan original suponía que en los próximos meses el avión participaría en más pruebas de vuelo, durante las cuales se certificaría para el funcionamiento de un vehículo no tripulado en condiciones de espacio aéreo controlado, respectivamente, en cooperación en tiempo real con otros elementos de la red desde estaciones terrestres. , pasando por otras aeronaves pilotadas y no tripuladas hasta satélites de comunicaciones. Sin embargo, es evidente que algo no salió según lo planeado. El Barracuda es un demostrador extremadamente sofisticado y complejo, y la ya inusualmente larga fase de pruebas antes del primer vuelo demostró que crear una unidad compacta y funcional a partir de todos los elementos no es una tarea fácil. El avión sólo realizó un vuelo que duró sólo 20 minutos, lo que los representantes de la compañía EADS explicaron como mal tiempo. Además, para los próximos meses sólo estaban previstos tres vuelos más, que posteriormente se redujeron a sólo dos. Como resultó más tarde, también fue el factor más crítico de todo el programa. Ya el 23 de septiembre, la Barracuda hizo honor a su nombre y se unió a otros miembros de su especie en el fondo de la bahía cerca de la base de San Javier después de caer al océano durante un error no especificado durante la aproximación al aterrizaje. Hasta entonces se habían gastado en el proyecto unos 40 millones de euros. La pérdida del único prototipo planteó una pregunta muy grave: ¿qué sigue? Es difícil imaginar un programa de demostración de vuelo sin el propio demostrador de vuelo.



En el último Salón Aeronáutico de París en 2009, Stefan Zoller, director general de EADS, se olvidó de mencionar que la propuesta para construir un segundo prototipo del Barracuda fue aprobada y que el aparato ya se está preparando para su vuelo inaugural en Goose Bay, Canadá. Por otro lado, afirmó que la empresa EADS ha dejado de trabajar en el desarrollo de UCAS y aviones UAS armados, ya que no prevé la demanda del mercado de este tipo de máquinas en los próximos diez años. Al mismo tiempo, el Parlamento alemán aprobó a finales de 2007 la continuación del trabajo en el proyecto Agile - NCE (Agile UAV Within Network Centric Environments), del que forma parte el Barracuda, y esta vez forma parte del proyecto Los costos de desarrollo también son cubiertos por el Ministerio de Defensa a través de sus organizaciones. En el trabajo de desarrollo también participaron empresas colaboradoras de España y Finlandia. El proyecto debería durar al menos hasta 2013, pero sólo con la condición de que el segundo prototipo con número de matrícula 99+81 no siga la suerte del primero. Aunque originalmente estaba destinado a ser esencialmente una copia del Barracuda original, el nuevo demostrador ha sido mejorado con algunos sistemas y capacidades nuevos, principalmente en términos de aviónica más avanzada. Además del número de casco, también es fácilmente reconocible por la carcasa esférica con sensores electroópticos debajo del casco y la antena circular que sobresale en la parte superior. Sólo se puede especular sobre su destino futuro. La filial de EADS en Alemania intentó inicialmente implicar a otras empresas de España, Italia y Suecia en los trabajos de desarrollo y principalmente en la financiación del proyecto, con el fin de crear un contrapeso al programa nEUROn gestionado por los franceses, pero hasta ahora sólo las mencionadas anteriormente. Finlandia se ha sumado al socio español original. Sin embargo, sigue siendo cierto que Barracuda es sólo una plataforma de prueba para nuevas tecnologías y sistemas avanzados, por lo que no verá una serialización directa. Las tecnologías y la experiencia desarrolladas se incorporarán a otros drones que ya están diseñados como producto final para un cliente específico. En los últimos meses también se ha especulado sobre la construcción de un tercer ejemplar, que ayudaría a ampliar las pruebas de vuelo, pero aún no está claro si se encontrará suficiente dinero para ello.






DLR UCAV 2010

Dado que el Barracuda es más un demostrador tecnológico que un prototipo de avión de combate no tripulado, Alemania se encuentra en una situación poco optimista, en la que, a pesar de una industria aeroespacial desarrollada, no tiene ningún proyecto activo para un aparato del tipo UCAS. Esto es, al menos en parte, lo que el centro de investigación nacional DLR o su departamento SISTEC (Simulación y Tecnología de Software) intenta compensar con su proyecto UCAV 2010. Su objetivo principal es la identificación de tecnologías relevantes para el desarrollo de un vehículo de combate no tripulado. y su implementación matemática y experimental. En la práctica, esto significa principalmente diseñar las misiones modelo que dicho medio debería realizar y, en base a ellas, definir los requisitos para el ejemplar volador del propio sistema. Se presta la misma atención al desarrollo de diversos programas de soporte. Los trabajos han estado en marcha desde principios de 2007 y la financiación está asegurada hasta el 31 de diciembre de 2010.



Se estudiaron varias configuraciones del fuselaje, el ala, la disposición interna y superficies alternativas de la cola, de las cuales se seleccionó un pequeño grupo de las más prometedoras para futuras investigaciones. El resultado debería ser un diseño completo de un prototipo virtual de avión tipo UCAV, que se probará en un entorno de simulador de vuelo. Debe cumplir con los requisitos de maniobrabilidad extrema o probabilidad mínima de interceptación por la defensa antiaérea enemiga. Según las estimaciones, la demanda real de vehículos de combate no tripulados podría aparecer alrededor de 2020, y el trabajo en curso puede crear una base de conocimientos para una futura aceleración significativa de su desarrollo.



EADS Talarion

Según estimaciones relativamente optimistas de principios de este milenio, varios países europeos expresaron interés en adquirir aviones de reconocimiento no tripulados del tipo MALE para sus fuerzas armadas. En 2015 habría más de 50 máquinas de este tipo. El primer proyecto que intentó satisfacer estos requisitos fue el desarrollo de la herramienta Euro MALE en el marco de la cooperación germano-francesa-danesa. Se deriva del avión Heron TP (Heron 2), que debe su creación a la cooperación de EADS e IAI. Después de su cancelación, EADS cambió su enfoque y actualmente está tratando de consolidarse con el diseño de un avanzado vehículo no tripulado de construcción modular, conocido inicialmente sólo con el nombre general de "Advanced UAV". Se deriva directamente de las tecnologías y la experiencia adquirida durante el desarrollo del producto Barracuda. La base es un casco común con una longitud de 10,3 metros, que se puede adaptar con su equipamiento a las necesidades de una misión específica. Además de la modularidad, otra característica distintiva destacada es el propulsor mediante dos motores turbofan, ubicados en góndolas en la parte superior trasera del fuselaje. Desde el punto de vista del diseño, no es exactamente la solución más ideal, pero es un compromiso para adaptarse a las necesidades del cliente. En el abultado morro del avión se encuentra una antena de satélite para la banda Ku, y en la parte delantera, delante del centro de gravedad, hay un espacio universal para radares o equipos electrónicos.



La empresa EADS está intentando convencer a sus socios más cercanos, es decir, los gobiernos de Francia, Alemania y España, para que se unan en el desarrollo de un demostrador de vuelo en configuración MALE, que desde entonces lleva el nombre de Talarion. A la base unificada del fuselaje se añadió un ala grande con una envergadura de 27,9 metros, lo que le permite alcanzar una altura operativa de hasta 14 kilómetros. De esta manera, el agente puede evitar niveles de vuelos comerciales excesivamente inflados. La resistencia en el aire se recalculó en 17 horas con un alcance de alrededor de 925 km. Sin embargo, tener como cliente al gobierno alemán o a las fuerzas armadas del país es más un castigo que una victoria. Según una declaración extraoficial de uno de los altos representantes de la Fuerza Aérea Alemana, no estaban entusiasmados con la nueva propuesta, por lo que su futuro futuro es cuestionable, pero EADS logró conseguir al menos un contrato por valor de 60 millones de euros durante 15 meses de estudios iniciales. Sin embargo, en aquel momento empezó a surgir una posible competencia en forma de un consorcio de las empresas Alenia, Dassault y SAAB. Originalmente, se suponía que el vehículo italiano Sky-X serviría como base, pero Dassault también se centró en el avión Heron o en el avión F 355, que es un vehículo producido bajo licencia derivado del tipo Hermes 450. Al final, la situación se complicó aún más: el concurso está formado finalmente por un consorcio formado por Dassault y BAE Systems, que promueve un derivado de la máquina Mantis, mientras que la italiana Alenia firmó un acuerdo marco con EADS para una cooperación a largo plazo en el desarrollo de vehículos no tripulados. Así que se reparten las cartas europeas.





También se presentó una versión de combate y reconocimiento táctico de alta velocidad, que debe penetrar por encima del área objetivo a una altitud baja de aproximadamente 300 metros a una alta velocidad subsónica. Para ello recibió un ala de flecha con una envergadura de aproximadamente 9 metros. En tal modificación nada lo impide, y el espacio para equipos electrónicos también se adaptaría para portar armas.



Alenia Sky-X

Sin duda, la empresa italiana Alenia se encuentra entre las empresas europeas activas en el ámbito del desarrollo de aviones de combate no tripulados. Ya en 2003 presentó un modelo de su nuevo demostrador no tripulado Iron Bird, con el que se pretende adquirir experiencia en el desarrollo de aviones del tipo UCAS. Originalmente, era más o menos un ala voladora con la aplicación completa de tecnologías furtivas, capaz de lanzar de forma autónoma dos bombas de 225 kg de la categoría JDAM al objetivo con el inicio de las pruebas de vuelo en mayo de 2004. Sin embargo, durante el desarrollo, varios aspectos fundamentales Se produjeron cambios, y así, por ejemplo, para ahorrar costes se diseñó un nuevo casco, derivado del tren de aterrizaje para el lanzamiento de submuniciones. En su construcción se utilizaron ampliamente los sistemas CAD/CAM. Se trata de un prototipo exclusivamente experimental, donde al principio no se planteaba la producción en serie. Se suponía que este programa ampliaría aún más en Europa el concepto de utilizar demostradores y prototipos de vuelo, al que hasta ahora estábamos más acostumbrados en Estados Unidos. Uno de los factores clave del desarrollo fue también la eficiencia en el ámbito de los fondos gastados. El presupuesto inicial incluía una inversión de 32,1 millones de dólares.



El demostrador XD-001, rebautizado desde entonces como Sky-X, mide 6,94 metros de largo y una envergadura de 5,78 metros. El fuselaje tiene un diseño modular, por lo que el radar, la electrónica y otros equipos se pueden reemplazar fácilmente. Un motor a reacción Microturbo TRI60-268 proporciona propulsión. La boquilla está sombreada por un par de superficies de cola en forma de mariposa en la parte trasera. La máquina vacía pesa aproximadamente una tonelada con un peso máximo al despegue de 1450 kg. La carga útil es de unos 200 kg, pero los parámetros de peso cambian con el tiempo con el desarrollo y la incorporación de nuevos equipos. El sistema de control de vuelo y la navegación del Athena 311 fueron suministrados por Athena Technologies, una subsidiaria de Rockwell Collins. Como ya se ha mencionado, para ahorrar costes, el casco se derivó del tren de aterrizaje existente para el lanzamiento de submuniciones, lo que, paradójicamente, trajo varios problemas de carácter técnico. Sobre todo, se trataba de una grave falta de espacio interior y, como en el casco se iba a colocar un compartimiento de bombas relativamente grande, no quedaba mucho espacio para el combustible. Gracias a ello, el vehículo tiene una autonomía de apenas 150 kilómetros y puede permanecer en el aire un máximo de una hora. La conexión del ala con el fuselaje también causó problemas, ya que se requiere una resistencia relativamente alta de toda la estructura, ya que el demostrador está construido para maniobras relativamente bruscas con una sobrecarga de hasta 5 G.



El primer vuelo tuvo lugar el 29 de mayo de 2005 en la base de Vidsel en Suecia, lo que convirtió al vehículo Sky-X en uno de los primeros vehículos no tripulados europeos en probar exhaustivamente las tecnologías necesarias para los aviones de categoría UCAS. La primera actuación pública tuvo lugar poco después en el Salón Aeronáutico de París en Le Bourget. Durante la fase inicial, el avión alcanzó un alcance de 10.670 metros y una velocidad máxima de Mach 0,7. En la base de Vidsel se probó un sistema de despegue y aterrizaje totalmente automático, ya que hasta entonces el aparato tenía una autonomía relativamente baja y estaba controlado principalmente por un operador desde una estación terrestre. Esto permitió pasar a la siguiente fase, en la que se ampliaron las capacidades de la máquina a la hora de realizar misiones de combate o de reconocimiento, especialmente en el campo de la adaptación a las condiciones ambientales cambiantes durante el vuelo. Al mismo tiempo, se instaló en el avión la primera versión de prueba de sensores electroópticos y su operador también pudo utilizar el nuevo enlace de datos táctico.



A principios de 2007, el Sky-X regresó a Italia, a la base de Amendola, donde poco después, en el marco de la tercera fase de pruebas de vuelo, realizó su primer vuelo en el espacio aéreo italiano, que duró aproximadamente 25 minutos. En julio de 2008, estableció un nuevo récord mundial al convertirse en el primer avión no tripulado en realizar una serie de maniobras autónomas y conectarse con otro avión (en este caso, un Alenia C-27J Spartan) mientras simulaba un repostaje en vuelo. Gracias a su diseño modular, el vehículo Sky-X puede probar varias configuraciones de vuelo no estándar. Actualmente, se están realizando trabajos para quitar las superficies de la cola y es posible que el vehículo también reciba un ala delta. El número reducido de superficies de maniobra sustituirá el sistema de vectorización de empuje. También se está trabajando intensamente en un bombardero "inteligente" y pronto podremos esperar pruebas de vuelo con armas. Esta serie de pruebas y trabajos de investigación está prevista hasta 2013, pero ya se baraja que podría ampliarse otros dos años.




Alenia Sky-Y

A mediados de 2006, se comenzó a trabajar en un vehículo no tripulado más grande llamado SkyLynx, que luego se redujo a Sky-Y. Este último tiene un diseño más clásico con un fuselaje de 9,7 metros de largo, un ala recta con una envergadura de 9,9 metros y superficies de cola que se encuentran sobre dos pilones que se extienden desde el ala a los lados de la parte trasera del fuselaje. Entre los pilones hay un motor diésel de dos litros con hélice de empuje. La parte frontal convexa del fuselaje esconde la antena para la conexión por satélite. A pesar de las mayores dimensiones en comparación con el vehículo Sky-X, el peso máximo al despegue es de sólo 1,2 toneladas, de las cuales 150 kg son la carga útil. El acceso también es muy similar, pero Sky-Y puede durar hasta 14 horas en el aire. La empresa Alenia probó en el avión las posibilidades de fabricar una máquina con estructura totalmente compuesta.



Un objetivo principal igualmente importante fue el sistema de propulsión, es decir, el uso de un motor diésel en un vehículo no tripulado. El motor, con una cilindrada de dos litros, sistema de inyección directa Common-Rail de alta presión y una potencia de 149 kW, fue suministrado por FIAT y modificado por el italiano Diesel Jet antes de ser instalado en el avión. Dado que se trata de un motor común y producido en masa, se espera que su uso reduzca significativamente la adquisición y, dado el tipo de combustible, los costos operativos. El primer vuelo tuvo lugar el 20 de junio de 2007 después de sólo once meses de desarrollo, 7 meses menos que la máquina Sky-X. Las primeras pruebas de vuelo se llevaron a cabo nuevamente en la base sueca de Vidsel. El avión demostró la capacidad de vuelo autónomo, incluidos el despegue y el aterrizaje, incluso con visibilidad reducida o de noche, así como la capacidad de utilizar sensores electroópticos Galileo EOST-45. Otros equipos probados incluyen sensores de imágenes y una línea de datos de Selex Communications o Quadrix. En algún momento a principios de 2009, se comenzó a trabajar en una versión más potente y más grande de Sky-YS. La principal diferencia es el motor más grande de 3,4 litros.




Ya a finales de 2006, hubo indicios de que el demostrador Sky-X podría conducir al desarrollo de un avión de combate no tripulado propio de Italia para su producción en masa. Sin embargo, en ese momento todavía no estaba claro si se trataría sólo de una duplicación de la configuración existente del Sky-X o de un nuevo aparato sin superficies de cola y con un ala delta. Si la propuesta hubiera sido aprobada y los trabajos hubieran comenzado ya en ese momento, se esperaba que la producción en serie se produjera alrededor de 2017. En relación con la versión en serie, incluso se habló del demostrador Sky-Y, que todavía se estaba preparando en la El tiempo de entrada en servicio regular se calculó en 2011. Ambas consideraciones indican que Alenia no está satisfecha solo con participar en el programa nEUROn y con demostradores experimentales, sino que está considerando activamente el desarrollo de máquinas no tripuladas tanto para uso comercial como militar. usar. Sin embargo, los resultados prácticos aún no se notan.




Alenia Molynx y Black Lynx

Los dos programas anteriores de demostración de vuelo con drones allanaron el camino para los dos proyectos siguientes, que ya se están considerando para su producción en masa y su oferta al mercado global. El primero de ellos es el avión no tripulado bimotor Molynx para aplicaciones militares y civiles, presentado oficialmente en octubre de 2006. El nombre del proyecto sugiere que la apariencia de la máquina se inspiró parcialmente en el trabajo del diseñador italiano Carlo Mollino, concretamente su diseño de un avión bimotor para 4-5 pasajeros. Tiene 18 metros de largo con una envergadura de 25 metros y un peso máximo de despegue de 3200 kg. El peso de la carga útil ya debería rondar los 800 kg. Gracias a ello se espera que alcance más de 15.000 metros y permanezca en el aire más de 30 horas. La principal tarea de la aeronave es la de reconocimiento y vigilancia aérea, ya sea para aplicaciones civiles o militares. Para ello, puede equiparse con una amplia gama de sensores.



De tamaño más pequeño pero más pesado, el avión Blacklynx está destinado principalmente a ataques con municiones guiadas de precisión. Puede transportarse sobre cuatro pilones bajo el ala o, alternativamente, en los compartimientos de bombas internos considerados. La envergadura se aumentó a 28 metros, incluida la adición de aletas, pero el fuselaje se redujo a 9 metros de longitud. El peso máximo de despegue ha aumentado a 4100 kg y, en comparación con el avión Molynx, el Blacklynx debería durar hasta 36 horas en el aire.