jueves, 27 de diciembre de 2012

Radares navales: AEGIS y SPY

AEGIS



Desde la Segunda Guerra Mundial la US Navy viene desarrollando tácticas y sistemas para protegerse de ataques aéreos. Después de la Segunda Guerra Mundial varias generaciones de misiles anti-navío aparecieron para unirse a la amenaza aérea. El primer navío hundido por uno de estos misiles fue el destructor israelí Eilat hundido por misiles Styx rusos disparados de lanchas lanza-misiles egipcias en octubre de 1967.

La amenaza fue confirmada en abril de 1988 cuando dos navíos iraníes disparan contra navíos americanos en el Golfo Pérsico. En el cambio de misiles una fragata iraní y una corbeta fueron destruidas por misiles Harpoon americanos.

La estrategia para defenderse de estas amenazas, que pueden atacar desde larga distancias, a partir de mar, tierra, aire y submarinos, coordinados con otros medios, y alcanzando simultáneamente el blanco, fueron las tácticas de defensas en capa. Los cañones fueron sustituidos por la primera generación de misiles superficia-aire.

Operaciones en el litoral requiere la capacidad de defenderse de 5-10 misiles con alerta de 30 segundos, junto con amenaza aérea y de superficie, interferencia y ruido de fondo. Los blancos pueden estar volando bajo, realizando maniobras "pop-up", misiles balísticos y blanco furtivos.


SPG-59/Typhon 

La primera tentativa de hacer un radar de barrido electrónico fue en 1958 con la US Navy desarrollando un sistema de guerra antiaérea (AAW) llamado Typhon que daría capacidad multi-blancos para los sistemas de misiles Terrier Tartar y Talos. Estos sistemas no fueron proyectados para contraponer la amenaza de bombarderos y misiles de la aviación naval soviética en ataque de saturación.

La solución de la época era un modo de guia de tipo "track-vía-missile/" (TVM), usado posteriormente en el Patriot terrestre, donde la señal de radar era recibido por el misil, pero repasado y procesado en el navío que tenía mucha más capacidad de procesamiento. La estructura del sistema necesitaba de un radar capaz de desempeñar varías tareas como control de tiro e iluminación terminal de varios contactos simultáneamente. El corazón del sistema sería el radar de barrido electrónico SPG-59 junto con un misil capaz de interceptar blancos a 200km.

Luego en el inicio de las investigaciones las dificultades comenzaron a aparecer. No había tecnología disponible y los módulos TR eran muy caros. La búsqueda de módulos TR era baja para satisfacer la producción masiva y los módulos eran poco confiables. El coste de una única antena era muy caro y consumiría mucha energía sólo siendo viable en navíos nucleares. El programa fue cancelado en diciembre de 1963.

Los radares SPG-32 y SPG-33 fueron lo próximas tentativas de la USN de hacer un radar de barrido electrónico con los requerimientos relajados. La iluminación de blancos para misiles con guiado de radar semi-activa pasó a tener directores dedicados y continuó a ser usado un radar de vigilancia convencional mientras el SPG-59/Typhon sería el único radar a bordo.

Los requerimientos de acompañamiento preciso de varios blancos continuaba y eran complicados con la capacidad de contra-contramedidas de las escoltas de las aeronaves soviéticas. Los costes de los electrónicos disminuyó en una década pero aún eran caros. Los transistores aún no aparecieron en producción masiva y continuarían a usar válvulas. Aún así los radares fueron instalados en el Nae Enterprise y en el crucero Long Beach.

Estos sistema fueron instalados en navíos nucleares y eran bien pesados. Como el SPG-59, el sistema SCANFAR consumía muchísima energía y era una de las flaquezas de los sistema. La antena era muy pequeña y en un navío menor crearía problemas de estabilidad, o sería instalado próximo a la línea d'agua, disminuyendo su eficiencia.

En el Enterprise el radar daría una visión aérea clara actualizada instantáneamente. Durante el desarrollo fue percibido que cada sistema de vigilancia de área y acompañamiento de blanco necesitaría de características de fajo diferente. Esto resultó en el uso de dos antenas de forma diferente: El SPG-32 era rectangular para vigilancia aérea y el SPG-33 tenía un conjunto de cuadrados posicionado verticalmente para acompañamiento de blancos. Eran cuatro antenas en par cubriendo 90 grados cada.

El sistema mostró ser insatisfactorio durante su carrera. Aún cuando funcionaba, el sistema era incapaz de dar los beneficios prácticos esperados. Esto se debía más a los sub-sistemas analógicos o analógicos/digitales usados. Las dificultades de mantenimiento también era consideradas superiores a los beneficios operacionales. Las antenas del Enterprise y Long Beach fueron retiradas en el fin de los años70 e inicio de los años 80 y sustituidas por sistemas convencionales.


El crucero nuclear CGN-9 Long Beach fue equipado con el radar de barrido electrónico SPS-32 Scanfar, dos lanzadores dobles Terrier con 120 misiles y un lanzador doble Talos con 52 misiles. Fue propuesto para convertirse en AEGIS entre 1978 y 1981. El proyecto fue cancelado debido a edad del navío. En 1979 el Talos y SPG-59 fueron retirados. En 1983 el sistema Terrier fue sustituido por el Standard SM-1 y dos Phalanx. 


En 1958 fue iniciado el proyecto de un nuevo misil para sustituir el Talos, Terrier y Tartar que mostraron ser fácilmente saturado por ataque masivo. La razón de tiro era limitada a lo numero de radares iluminación. En 1958 escogido la guiado TVM con la señal de radar recibido por el misil, repasado para el navío donde era procesado que tendrían muy más capacidad de computación y usaría el radar SPG-59 de barrido electrónica. El misil fue llamado originalmente de Super Talos/Super Tartar, y para evitar confusión fue llamado de Typhon. El RIM-50A Typhoon LR pesando 9.070kg y alcance de 320km sustituiría el Talos y RIM-55A Typhon MR con alcance de 46km sustituiría al Terrier y Tartar. Los misiles tendrían radar activo y propulsión ramjet. Fueron considerados caros y complejos y cancelados en 1963 sin pasar de la fase de proyecto. A US Navy inició el proyecto de la familia Standard. La foto es del Typhoon LR.


Sistemas de Armas AEGIS MK-7 - SPY-1 

En el fin de los años 60, fue percibido que el tiempo de reacción, potencia y disponibilidad de los misiles de la familia Terrier ya no era suficiente. Así surgió el requerimiento del Advanced Surface Missile System (ASMS), y renombrado AEGIS en diciembre de 1969.

El AEGIS fue proyectado como un sistema de armas completo, de la detección hasta la destrucción del blanco para defender a cuadra de misiles anti-navíos, principalmente como una respuesta a la táctica soviética "carrier killer" de saturación con misiles anti-navío.

El sistema de armas AEGIS es un sistema de armas superficie-aire integrado. Fue proyectado para defender la flota contra cualquier amenaza aérea. El AEGIS es responsable por la defensa de aérea para grupo batalla y compila el cuadro aéreo para cazas que se concentran en la batalla aérea externa. Con modernizaciones posteriores el AEGIS pasó a ser el sistema de defensa anti-misiles balísticos primario de la US Navy.

Los componentes principales del sistema: misil y sistema de lanzamiento (Versiones del Standard y el lanzador MK26), Command and Decision System, Weapons Control System, antena de barrido (la famosa antena plana AN/SPY-1A) y sistema computacional asociado y el sistema de comando y control.

El AEGIS fue desarrollado a partir del sistema Typhon para ser instalado en grandes fragatas, aprovechando tecnologías, como los radares de barrido electrónico SPG-59 junto con el programa Talos y Tartar.

En 1968 fue suscrito un contrato con Boeing/General Dynamics y RCA para desarrollo y pruebas del sistema.

La RCA Electronics, que pasó para la General Electric y ahora parte de la Lockheed Martin, recibió un contrato inicial para desarrollar el AEGIS y su componente más importante, el radar de barrido electrónico SPY-1, en 1969. El radar iría a cooperar con el nuevo misil superficie-aire RIM-66 Standard que estaba entrando en servicio masivo.

Las lecciones del Typhon y SPS-32 SCANFAR serviría para que los investigadores piensen en el mundo real con un sistema útil. Desde lo inicio fue pensado en integrar todos los sistema digitales de control y manipulación del haz principal y del procesamiento de la señal recibida. Esto aseguraría que el sistema funcionaría como anunciado. La antena también sería muy leve y consumía menos energía. Fue hecha una separación clara entre hardware y software para facilitar las modernizaciones de largo plazo. Fue dado énfasis el mantenimiento y confianza, aún sacrificando el desempeño.

El sistema inicial fue instalado por primera vez en el navío prueba AVM-1 Norton Sound en 1974. El navío también recibió módulos de todo el sistema como el CIC y radares de iluminación de misiles. En 1975 lo corrió la primera prueba del sistema con un misil Talos modificado siendo abatido por un misil Standard .

El enganche de blancos múltiples fue demostrado en 1977. El navío disparó dos misiles Standard RIM-66C contra dos drones BQM-34. Los misiles no fueron iluminados todo el tiempo como en los SAM navales anteriores. Fueron disparados inicialmente en dirección a un punto en su y guiados hasta allá con su INS. Después recibieron actualización de medio curso de la posición del blanco del radar SPY-1. Los blancos fueron iluminados por el SPG-62 dividiendo el tiempo entre los de los blancos. Los dos blancos fueron derribados.

Entre 1974 y 1980 fueron realizadas pruebas y mejorías en los sistema. La adopción de nuevos ordenadores aumentó en mucho el desempeño y confianza. La prontitud nunca era menor que un 96%.

Desde lo inicio de las pruebas había dudas sobre como el sistema sería usado. Una propuesta era de un destructor para uso masivo y con bajo coste y capacidad limitada. Esto causaría divergencia entre la capacidad prometida y el poder aparentemente limitado del nuevo navío.

Fue estudiada la instalación del AEGIS en los cruceros nucleares de la Clase Virginia (CGN-38), pero los plazos de entrega y otras consideraciones hicieron impracticable. Después fue estudiado un crucero de ataque nuclear (CSGN) para el inicio de la década de 70. Los dieciséis CSGN serían usados a los pares para escoltar cada uno de los ocho NAe nucleares americanos. Esto significa que los AEGIS serían navíos poco numerosos y la tecnología no sería usada como querían.

Con la cancelación del CSGN, finalmente fue adoptado una versión mayor del destructor Spruance con AEGIS y dos lanzadores MK-26, después sustituidos por el VLS Mk-41 de lanzamiento vertical. Estos navíos fueron clasificados como cruceros, llamados de clase Ticonderoga, y entraron en operación en 1983.

El AEGIS es un sistema de sistemas. El corazón del AEGIS es el radar AN/SPY-1 de barrido electrónico que hace búsqueda, detección, acompañamiento y control y guiado de misiles simultáneamente.

Los otros elementos son el Mk 99 fire control directors (radar SPG-62), Command and Decision System, Fire Control System, Weapons Control System, Operational Readiness and Test System, Aegis Combat Trainer System, y Aegis Display System.

El SPY-1 es capaz de detectar y acompañar centenares de blancos de más de 350km, los clasificas, pudiendo enganchar varios al mismo tiempo, más de 20, separadamente, con los misiles SM-2 Standard. El tiempo de reacción medio en segundos supera en mucho los radares giratorios. El radar también es capaz de detectar blancos de superficie y balísticos.

El radar SPY-1 no debe ser descrito sin considerar el contexto de todo el sistema que apoyo. El radar opera en la banda S (3,1-3,5 GHz) y usa cuatro antenas de barrido electrónico pasiva tiene forma octogonal plana midiendo 3,65x3,65m cada. El fajo tiene cerca de 1,7x1,7 grados. La versión inicial SPY-1A tenía 4.480 elementos agrupados en 32 grupos de transmisores.

Los elementos transmisores tienen 132W de pico de potencia. La potencia media es de 58KW y la potencia máxima llega la 4-6 MW. Un radar de búsqueda rotatorio genera cerca de 1 MW en la misma banda.


En la foto, de un crucero Ticonderoga, es posible ver la antena de la proa. Existe otra tres en las laterales y una otra por encima del hangar del helicóptero, en la superestrutura de red. Con esa disposición, el navío posee una cobertura de 360º continua. Cada antena cubre 90 grados. El alcance es de 300 km para búsqueda aérea y cerca de 80km para búsqueda en el horizonte. El coste total del programa AEGIS fue de US$ 42,7 mil millones de dolares.

El centro del sistema Mk7 Mod3 era compuesto de 16 supercomputadores UYK-7, un servidor UYK-19 y 11 minicomputadores UYK-20, todos de la Unisys. Los módulos de computación eran agrupados físicamente juntos para formar una unidad procesadora única con interfaz con pantalla a color Hughes AN/UYA-4 y cuatro otros menores PT-525. El sistema fue limitado a mostrar 128 blancos para evitar saturación y puede ser aumentado en combate. Los últimos modelo usan ordenadores comerciales con más de mil veces la capacidad de procesamiento original.

En el modo automático, los ordenadores tiene total autoridad de los sensores del navío y armas y también de varios navíos próximos subordinados al control del navío vía NTDS u otros sistemas de datalink compatible. La estructura del sistema es compatible con los protocolos NTDS y cambio datos veía Link 11 y Link 16.

La principal diferencia con la próxima versión SPY-1B era la adición de un modo de alta elevación para acompañar misiles la gran altitud como lo Las-4 y Las-6. Nuevos modelos más compactos disminuirían el peso total (cada uno pasó de 5,44kg para 3,56kg por módulo TR). Esto también resultó en la disminución del número de elementos en el subgrupos y la formación de fajos más angostos. Nuevos ordenadores UYK-43/44 fueron instalados con mayor capacidad de procesamiento. Aún con la reducción del consumo de energía los Ticonderoga perdían cerca de 2.000 millas de alcance cuando el SPY-1 transmitía continuamente.

En 1980 fue percibido que navíos menores con capacidad AEGIS ya era posible con la tecnología disponible y manteniendo la misma capacidad. Un navío menor tendría casco con avances para mantener las calidades marineras y disminuir la firma IR y RCS. Así surgió la clase DDG-51 con el primer navío comisionado en 1991.

La nueva clase de destructores DDG-51 Arleigh Burke tiene un desplazamiento inferior comparado con los DDG-47 Ticonderoga y recibieron el modelo SPY-1D. Cada transmisor pesaba 1,91 kg. El SPY-1D también fue instalado en los destructores Kongo japoneses y en las fragatas F-100 españolas.

El SPY-1D(V) fue modernizado para operar en el litoral con mejor capacidad contra misiles crucero furtivos volando bajo y ruido de fondo pesado en la presencia de interferencia electrónica pesada. El SPY-1D(V) fue instalado en los DDG-51 Flight IIA iniciando en 1998.

Las versiones más reciente SPY-1F y SPY-1K son más ligeras y con área menor y proyectadas hacia exportación. El SPY-1F fue seleccionado para las cinco fragatas F-310 noruegas. El SPY-1K es aún más compacto y debe ser usado en fragatas y corbetas. Las versiones menores no tiene capacidad anti-misil balístico


Fragata española F-100 Alvaro de Bazan equipada con AEGIS

A pesar de las incontables ventajas el SPY-1 tenía algunos puntos débiles. El AEGIS fue proyectado para operar en el mar abierto y en el litoral, sin embargo, fue configurado para mirar por encima del terreno para evitar blancos falsos en exceso. Esta configuración puede aumentar la susceptibilidad contra blancos volando bajo. Otro problema es que después de disparar una salva, el blanco no será reenganchado hasta ser confirmado su destrucción. Como el radar es instalado relativamente bajo y no en un mástil, el horizonte radar es menor. Los DDG-51 tampoco tiene un radar de búsqueda secundario AN/SPS-49 como los Ticonderoga.

El AEGIS ya fue probado en combate, pero sólo para disparar misiles Tomahawk. En 1980 el crucero USS Vincennes (CG-49) disparó un misil Standard contra un Airbus pensando que era un F-14 iraní. En otra ocasión un otro Ticonderoga abrió fuego contra nubes pesadas pensando ser un ataque aéreo.

Las versiones bases del sistema AEGIS son:

Arrow Baseline 1 (CG-47 al CG-58) con SPY-1A.

Arrow Baseline 2 (CG-52 la CG-58) con VLS Mk-41, Tomahawk y mejorías en las capacidades ASW.

Arrow Basline 3 (CG-59 al CG-64) usa el AN/SPY-1B con consola AN/UYQ-21.

Arrow Baseline 4 (CG-65 al CG-73) usa ordenadores AN/UYK-43/44 con programas del DDG-51. Forma la base del DDG-51-67.

Arrow Baseline 5, introducido en 1992, incluye JTIDS, Link 16, Combat Direction Finding, Tactical Data Information Exchange System, AN/SLQ-32(V)3 Active Electronic Counter Countermeasures, y el AEGIS Extended Range (ER) Missile.

Arrow Baseline 6 tiene capacidad antimíssil balistico (TBMD) y enganche cooperativo (CEC). Será equipado con ESSM y sistema de identificación modernizado, entre otros.

Arrow Baseline 7 está equipado con AN/SPY-1D(V), Standard-2 Block IIIB y Advanced Integrated Electronic Warfare System (AIEWS).


SPY-3

La US Navy planea instalar un radar multifuncional (MFR) en sus futuros navíos basado en tecnología AESA.

El programa de desarrollo de tecnología Multi-Mission Receive Shared Aperture (MMRSA) para el destructor DD(X) fue iniciado en 2001 para desarrollar un radar de la banda banda H/I/J (6-18 GHz).

Eran dos configuraciones posibles en la forma del AN/SPY-2 operando en la banda Y/F de la Lockheed Martin. Costaría US$ 125 millones cada o US$ 100 millones sin capacidad contra misiles balísticos.

El otro programa sería un radar AESA de la banda I/J de medio alcance de la Raytheon apoyado por un radar de búsqueda de volumen tridimensional (3D) Volumen Search Radar (VSR). El VSR tendría coste de desarrollo de US$100-150 millones con antena de 3,6m de diámetro con tecnología de arreglo en fase equipada con 240 módulos de 140W cada y 730 receptores. El alcance de búsqueda sería de 400km. Costaría US$ 10 millones cada.

El MFR costaría US$ 200-300 millones para desarrollar y sería optimizado para defensa contra misiles de crucero antinavio volando muy bajo. Tendría 24 mil TRM y variantes menores para NAes y navíos anfibios. El coste unitario sería de US$ 30 millones cada o menos para variante de 4 mil elementos. Sería capaz de detectar periscópio, misiles, iluminar blancos, y realizar búsqueda y acompañamiento de blancos.

La US Navy estudió la propuesta del APAR Mk 2 que equiparía el DD(X) y la fragata alemana F-125.

La Raytheon fue escogida e irá a equipar el CVN-77 y DD(X). La entrada en operación está prevista para 2008 con DD(X). El radar dirigirá los misiles ESSM y SM-2/3 Standard, además de proyectos futuros. Si llamará AN/SPY-3 Multi-Function Radar (MFR) operando en la banda X.

El MFR será suplantada por un radar de búsqueda de volumen que substiturá los SPS-48Y, SPS-49, SPN-43, SPS-67, Mk23 TAS y Mk-95 pudiendo ser instalado en navíos antiguos

En junio de 2003 la Raytheon Integrated Defense Systems entregó la primera antena SPY-3 para pruebas en la US Navy.


DD(X)


CVN-78 




Fuente inicial: Sistemas de Armas

martes, 25 de diciembre de 2012

Segunda Guerra Indo-Pakistaní: Un Gnat se rinde a un F-104

1965 Guerra indo-pakistaní 
Un caza Gnat indio se rinde 
11 de Septiembre de 1965, 11.05 horas 



El líder del escuadrón Brijpal Sikand Singh, comandante de un escuadrón de combate indio, se entrega a un caza F-104 de la PAF. La pintura muestra al avión aterrizando su avión Gnat en Pasrur, un campo de aviación pakistaní cerca de Gujranwala. El F-104 fue volado por el Teniente de Vuelo Hakimullah que se convirtió en Jefe de la Fuerza Aérea dos décadas más tarde. Sikand fue hecho prisionero y más tarde llegó a ser un Mariscal del Aire de la IAF. Este encuentro fue el acontecimiento más raro de la Guerra Aérea de 1965.











Gripen: Suecia da de baja la versión A/B del Gripen

Los suecos dicen adiós al Gripen A / B 
por Fernando "Nunão" De Martini 



Modelos de una y dos plazas de la primera generación todavía volaban en una unidad de combate de entrenamiento, que se dió de baja la Versión A / B la semana pasada con un vuelo y pintura conmemorativa especial de Navidad 

En la foto superior, el jefe de la segunda división del Ala F7 de la Fuerza Aérea sueca, Mayor Stefan Rexling, sale de la cabina de un Gripen A (JAS 39 A) por última vez. El avión recibió una pintura sin precedentes para Gripen, en conmemoración de este último vuelo que se realizó el jueves pasado, 13 de diciembre. 

Esta última incursión en Gripen A / B fue coordinado para coincidir con el tradicional "vuelo de Navidad", donde los aviones se exhiben en una formación árbol de Navidad, girando los faros de modo que el personal de tierra vea el "árbol" brillante. Este año, la formación voló sobre siete localidades. 



El ala F7 fue el primero en recibir el JAS 39 Gripen en 1996, y se convirtió en el último de volar la primera versión A / B, poniendo fin a una era. Sin embargo, nada va a cambiar en la función de esta unidad de formación de pilotos, ya que ella ya había estado con modelos reequipando JAS 39 C / D desde 2010. La única diferencia es que los nuevos pilotos de Gripen (recordando que los extranjeros también reciben capacitación en la unidad) empieza a buscar en sus vuelos directamente en los modelos C y D. 

En la imagen de abajo, puedes ver los detalles de la pintura especial que se aplica por defecto a los aviones utilizados por el jefe de la segunda división del Ala F7. El camuflaje se refiere a su predecesor, tanto del Gripen de la Fuerza aérea sueca como en la línea de montaje de Saab, el Viggen. Para aprender más sobre el desarrollo de ambos, haga clic en los tres últimos enlaces de la siguiente lista, que también trae bellas imágenes de este patrón de pintura en el Viggen. 



Fuente / FOTOS: Fuerzas Armadas Suecas 

Poder Aéreo 

lunes, 24 de diciembre de 2012

Feliz Navidad / Merry Christmas

China: Se viene un VTOL furtivo chino

Características del nuevo caza avanzado furtivo chino J-18 



La especulación ha circulado de que China está desarrollando por lo menos dos cazas furtivos de quinta generación, y está desarrollando activamente un avión furtivo VTOL, ahora, tal especulación para obtener nuevas pruebas. 

De acuerdo con el británico "Weekly Jane Defense", se informa que el sitio web militar de China Forum publicó recientemente una investigación sobre el desarrollo de la Shenyang Aircraft Grupo de un caza de despegue / vertical de dos motores, esto se conoce como el J-18 "Águila Roja" con el diseño de caza furtivo, es una la tercera de cinco diseños de cazas furtivos de China y el desarrollo después de la F -20 y F-31. 

"Defense News" de Estados Unidos, informó que las características del caza furtivo J-18 tiene instala radar activo de arreglo de fases, con sistemas de cabina de cristal y sistema de reabastecimiento en vuelo, su máximo número de Mach 2,5 alcanzando un radio de combate 2200 kilometros. El vuelo de prueba con éxito de los cazas J-18 en China ha alcanzado completamente un nivel avanzado mundial. 

El análisis de los medios hablan del J-18 de quinta generación furtivo. Pero la parte más vulnerable de los aviones de combate más avanzados de fabricación china, que casi tienen que depender de las importaciones de motores para tomar los cielos. 



Fuente

domingo, 23 de diciembre de 2012

Ejército Argentino: La Agrupación Patagónica en los 40s

Agrupación Patagónica

En una foto oficial del tanque Nahuel DL-43 en los costados de la torre, sobre la escarapela con los colores nacionales se leía perfectamente la leyenda :" Agrupación Patagónica". He aquí algunos detalles de esta Agrupación. 

Por decreto del 28 de Febrero de 1942 se establece la "Agrupación Patagónica", determinando que el Ministro de Guerra impartiría instrucciones para su constitución de esta unidad de combate que habría de depender del Inspector General del Ejército. 

El órden de batalla inicial de la Agrupación fue el siguiente: 

Comando de la Agrupación Patagónica, con asiento en Comodoro Rivadavía. 

Reg. 8 de Inf. Motorizado, reforzado con una batería de cañones Krupp 75 mm L30 mod. 1909 

Reg.24 de Inf. Motorizado reforzado con una batería de cañones Krupp 75 mm L30 mod. 1909. Esta unidad fue constituida en base al III R.I.14 (III batallón del Reg. 14 de Inf, con asiento en Rio IV (Pvcía de Córdoba) 



Destacamento "Río Grande: Se constituye en Río Grande, en base a a una sección de tiradores y una sección de ametralladoras pertenecientes al Reg. 24 de Inf. Moto. Esta unidad llega a sus cuarteles el 15 de Marzo de 1942. 

Destacamento Militar "Río Deseado": integrado por la 2a. compañía de Tiradores del Reg. 8 de Inf, que llega a su guarnición el 20 de Septiembre de 1940 

Posteriormente , la "Agrupación Patagónica" es completada con la 1a. Compañía de Comunicaciones Motorizada, con guarnición en Río Gallegos 

El 15 de Diciembre se establecen otras unidades y se reohganiza la Agrupación. 

Regimiento 25 de Inf. Motorizado, con asiento en Puerto Deseado. 

1a. Compañía de Zapadores Motorizada "Patagonía", en Comodoro Rivadavía 

Comando del 9o. Destacamento en Río Gallegos, del cual dependían 

Reg. 24 de Ing. Mot
. remontado a dos batallones. 

9o. Grupo de Artillería Liviana 

1a. Compañía de Zapadores Motorizada "Patagonia" trasladada a Río Gallegos



SAM: Bristol Bloodhound (UK)

Bristol Bloodhound 


El Bristol Bloodhound es un misil superficie-aire británico desarrollado durante la década de 1950 como la principal arma de defensa aérea del Reino Unido y estuvo en gran escala de servicio con la Royal Air Force (RAF) y las fuerzas de otros cuatro países. El Bloodhound Mk I entró en servicio en diciembre de 1958 y el último escuadrón de misiles Mk II se retiró en julio de 1991, aunque los ejemplares de Suiza se mantuvieron en funcionamiento hasta 1999. 


Un misil Bloodhound en el Museo de la RAF en Hendon, Londres. 

Historia 

Las Fases del Plan 
Después del final de la Segunda Guerra Mundial, las defensas aéreas británicas se las dejó caer en desuso, suponiendo que pasaría una década antes de que otra guerra empezara. Sin embargo, la prueba de la bomba atómica soviética de 1949 obligó a una nueva evaluación de esa política y los planificadores de defensa del Reino Unido comenzaron a estudiar los problemas de la construcción de una red más integrada de defensa aérea que el mosaico de conveniencias usados en la Segunda Guerra Mundial. El informe Cherry pidió una reorganización de los radares existentes en el marco del proyecto ROTOR junto con nuevos centros de control para coordinar mejor los cazas y las armas antiaéreas. Esto fue estrictamente una medida provisional sin embargo, a más largo plazo que requeriría despliegues de nuevos radares de largo alcance en lugar de los sistemas de la cadena principales de los sitios de la guerra, de mando y control capaces de sobrevivir a un ataque nuclear, interceptores siempre aumentando el rendimiento y misiles antiaéreos y cañones para proporcionar una defensa de último recurso. 

La porción de misiles era la tecnología más nueva y menos entendido. Con el fin de desplegar rápidamente y adquirir experiencia con estos sistemas, el "Plan de la Fase" fue desarrollado. "Etapa 1" llamado para misiles con un alcance de sólo 20 kilómetros con capacidades contra aviones atacantes subsónico o supersónico-bajo, que se supone que es una altura media o alta. La etapa 1 misil sería utilizado para proteger las bases de bombarderos V en el Reino Unido, así como el Ejército británico en el campo. [1] El escenario 1 misil sería más tarde sustituida por una mucho mayor rendimiento y de mayor alcance "Stage 2 "sistema en la década de 1960, lo que tendría capacidad contra objetivos supersónicos a distancias más largas. [1] 

Dos entradas fueron aceptados para la Etapa 1 original propuesta, un proyecto ya iniciado del English Electric bajo el nombre "Red Shoes", [2] y la propuesta de Bristol era "Red Duster". [3] los esfuerzos de Bristol fueron bastante similares a los de EE en la mayoría de los aspectos, aunque era un poco menos móvil al tiempo que ofrece un rango un poco mejor. Ferranti desarrollaría el radar y sistema de guía para ambos. Bristol se adjudicó un contrato de desarrollo en 1949, refiriéndose a ella como proyecto 1220. [3] 



Diseño 
En el 1220 se requirió de largo alcance, Bristol tomó la decisión desde el principio para utilizar un estatorreactor como potencia. Sin embargo, no tenían ninguna experiencia con este diseño del motor, y comenzaron una larga serie de pruebas para desarrollarla. A medida que el estatorreactor sólo funcionará eficazmente a altas velocidades por encima de Mach 1, Bristol construyó una serie de banco de pruebas de fuselajes para los motores de prueba de vuelo. El primero, JTV-1, se parecía un torpedo que vuelan con los estatorreactores colgaban del extremo de las aletas cruciformes posteriores. Los primeros problemas fueron subsanados y la serie JTV fue el primer avión británico ramjet alimentado para operar continuamente a velocidades supersónicas. [4] 

Una vez que la prueba JTV comenzó a proceder, Bristol estudió una serie de diseños de fuselaje. El primero era un tubo largo con una incorporación en la parte frontal, y cuatro aletas en forma de delta dispuestos cerca de la parte delantera del fuselaje. El consumo y las alas le dan cierta semejanza con la English Electric Lightning, aunque con un largo tubo que sobresale del extremo de popa. Esta disposición dejaba poco espacio interno para combustible u orientación. Un segundo diseño era similar, pero usa montado en la mitad de las aletas inversa-delta (forma plana en la parte delantera) con ingestas pequeñas en su raíz. La ejecución de estas tomas no se entendía bien, y consideró arriesgado. El diseño final fue esencialmente un avión pequeño, con medio juego alas trapezoidales y cuatro aletas pequeñas ala en flecha en la parte posterior extrema. En esta versión de dos motores fueron montados en las puntas de las alas, similares a la serie JTV de montaje y se comprenderán mejor gracias a los ensayos en vuelo. [4] 

Una característica única del nuevo diseño era el sistema de control, que utiliza dos alas giratorias montado punto medio en lugar de utilizar las superficies de control en la parte posterior, que es más común. Los controles operados mediante la rotación de las alas en diferentes direcciones con el fin de rodar la estructura del avión en línea con el cambio deseado, y luego operando a ambos al unísono para proporcionar la elevación en esa dirección. Bristol sentido de esta reduciría en gran medida la incertidumbre en la maniobra debido a los acoplamientos entre los controles. Los motores se montan por encima y por debajo de estas alas en extensiones cortas. La estabilidad direccional fue proporcionada por cuatro pequeñas aletas de delta unidas en la parte posterior extrema del fuselaje. [5] Un propulsor sólido de combustible muy grande lanzado el misil fuera de su lanzador y funciona a velocidades donde los estatorreactores podría tomar el relevo. 

Pruebas de vuelo 
En 1952, el diseño fue aceptado por el Comité de Ensayos Combinado Reino Unido/Australia. Un prototipo del nuevo diseño fue construido y volado en Gales como el XTV-1 a escala 1/4, funciona con tres propulsores de 5 pulgadas atados juntos. Esto demostró que la longitud total de la dosis de refuerzo unido sería un problema significativo en el campo. En respuesta, la dosis de refuerzo original fue re-diseñado como una serie de cuatro cohetes más pequeños diseñados para "dividido" en el fuselaje del misil. Este diseño ha sido probado en la escala 1/3 XTV-2, el de tamaño completo pero sin motor XTV-3 que puso a prueba los nuevos refuerzos, y finalmente el mismo tamaño y potencia XTV-4. La modificación final, primero probado en el XTV-3, fue reemplazar las aletas traseras cuatro con dos más grandes, lo que permitió los cuatro motores de refuerzo para ser montado en un anillo común, asegurando que se separaron en diferentes direcciones. Esto resultó en la definitiva XTV-5. [5] 

A medida que el diseño madurado, las exigencias del motor se finalizaron. La resultante Thor Bristol fue originalmente diseñado en colaboración con Boeing, que tenía una amplia experiencia con los motores similares del misil BOMARC. Las pruebas de las versiones de prototipos de producción, conocido como difracción de rayos X (experimental Duster Red), se trasladaron a la gama de Woomera en Australia del Sur a mediados de 1953. Estos resultaron muy decepcionantes debido a problemas estatorreactores, que fueron atribuidos a la utilización de una antorcha como una fuente de ignición en el interior del motor. Este fue reemplazado por un diseño encendedor del Establecimiento de Turbinas de Gas Nacional y los problemas se solucionó enseguida. Disparos contra aeronaves objetivo Jindivik comenzó en 1956, [3] y, finalmente, 500 pruebas de todos los diseños se completaron antes de entrar en servicio. [6] 

Orientación era semi-automática, con los objetivos inicialmente identificados por los sitios existentes de alerta de radar y luego entregada a los sitios para la detección Bloodhound local y ataque. Esto fue manejado por el camión-montado Tipo 83 "Río Amarillo" sistema de radar de pulso que puede ser bastante atascado con facilidad y era vulnerable a 'desorden' suelo, lo degradante de bajo nivel de capacidad. 

En el momento del sabueso estaba listo para su despliegue, las zapatillas rojas de combustible sólido, ahora conocido como el Thunderbird Inglés Electric, estaba dando buenos resultados y el ejército británico dejaron caer sus pedidos para el Bloodhound en favor de la Thunderbird. El Mk Bloodhound 1 entró en servicio británico en 1958, y fue seleccionado para la RAAF en noviembre de ese año. El despliegue de la Mc Bloodhound. Empecé en 1958, inicialmente para proporcionar protección de las bases de la RAF bombarderos V. Despliegues de Australia se inició en enero de 1961. 

Aunque el Bloodhound fue un éxito técnico, los auditores del gobierno encontraron que Ferranti había obtenido beneficios mucho más grandes que lo proyectado por el contrato del Bloodhound I. Sir John Lang presidió una investigación sobre el asunto. El Presidente de Ferranti Sebastián de Ferranti, accedió a pagar £ 4,250,000 al gobierno en 1964. [7] 



Evolución posterior 
En 1955 parecía que los misiles de la etapa 2 eran mucho más allá del estado de la técnica que son capaces de entrar en servicio antes de que el Thunderbird y Bloodhound ya sería obsoleta. Mientras tanto los muy mejorados sistemas de radar de onda continua siendo desarrollados para el mismo proyecto, Green Bengala, estaban progresando muy bien. A fin de abordar los problemas de tiempo, las etapas intermedias se añadieron. "Etapa 1 ½" combina un poco actualizado Thunderbird con Green Sparkler, mientras que "Stage 1 ¾" reemplazaría a la pura y simple con un diseño nuevo misil conocido como "Enviado Azul" con rango de 150 millas Bloodhound. [8] 

En 1957 el concepto fue abandonado toda etapa como parte del Libro Blanco de la Defensa 1957. Ingenieros Bristol compartiendo un taxi con sus homólogos de Ferranti urdió un nuevo plan para adaptar los estatorreactores Enviado azules y radares a un alargado Bloodhound, y presentado este para su estudio. La propuesta fue aceptada, produciendo el Bloodhound Mk. II. 

El Mk. II ofreció un motor de Thor más potente sobre la base de cambios investigados en Enviado azul, junto con un fuselaje alargado que el aumento de almacenamiento de combustible. Estos cambios dramáticamente extendido intervalo de aproximadamente 35 km a 80 km, empujando la distancia compromiso práctico a cabo a aproximadamente 50 km (aunque detectado en un intervalo de tiempo, el misil toma tiempo para viajar a su objetivo, durante el cual se aproxima a la base). [ 9] 

El Mk. II fue guiada tanto por el radar Tipo de Ferranti Firelight 86 para uso móvil, o el mayor emplazamiento fijo Tipo Marconi 87 "Scorpion". Además de su propia iluminación y antenas de seguimiento, el Scorpion también se añade una de las antenas del receptor fuera de un cuerpo del misil en el mismo marco. Esta antena se utiliza para determinar qué receptor propio del misil estaba viendo, que se utilizó para la detección de interferencia y evaluación. Los nuevos radares eliminado los problemas con los reflejos del suelo, lo que permite que el misil se disparó contra cualquier objetivo visible, no importa qué tan cerca de la tierra. En combinación con los nuevos motores, el Mk. II tuvo una actuación prolongada altitud entre 150 pies y pies 65.000 

El uso de un radar CW presentó un problema para el sistema de guía semi-automática. Los radares de onda continua se basan en el efecto Doppler para detectar blancos móviles, comparando las señales devueltas a la difusión de la señal de referencia es. Sin embargo, en caso de que el Bloodhound el misil se alejaba de la señal de referencia tan rápido o más rápido que, el objetivo sería acercarse a él. El misil tendría que conocer la velocidad del objetivo, así como su velocidad propia con el fin de saber qué frecuencia buscar, pero esta información sólo se conocía a la estación de radar en el suelo, el misil no emitir ninguna señal de su propia. Para resolver este problema, el sitio de radar también se transmite una señal de referencia omnidireccional, que se desplazó a la frecuencia que el receptor del misil debe buscar, teniendo en cuenta el objetivo y la velocidad del misil. Así, el misil sólo tuvo que comparar la señal de su receptor montado en la nariz con la señal desde el sitio de lanzamiento, simplificando en gran medida la electrónica. [10] 

Muchos de los cálculos en términos de liderazgo, cambio de frecuencia, y señalando los ángulos para los radares fueron manejados por la computadora hecha a la medida Ferranti Argus. Esta máquina más tarde pasaría a ser un equipo exitoso control industrial que se ha vendido en toda Europa para una amplia variedad de papeles. 

El Mk. II comenzó a probar en 1963 y entró en servicio la Royal Air Force en 1964. A diferencia de los Mc. Yo que había limitado ventajas de rendimiento en comparación con el Thunderbird, el Mk. II era un arma mucho más formidable con capacidades contra Mach 2 aviones a gran altura. Varias nuevas bases Bloodhound se prepara para el Mk. II, y algunos de los Mk. I se han actualizado las bases de acoger el Mk. II. 

Hubo una versión de exportación prevista, Bloodhound 21, que tenía menos sofisticados equipos electrónicos de contramedidas. [11] El Mk planificada. III (también conocido como RO 166) es una ojiva nuclear equipada Mk. II con un alcance mayor (alrededor de 75 millas) al alcanzado con el motor de estatorreactor mejorada y más grandes impulsores. El proyecto, una de varias adaptaciones de los actuales misiles británicos para llevar a los dispositivos nucleares tácticos, fue cancelado en 1960. El Mk. IV fue una versión cancelada móvil, basado en la experiencia de campo del Ejército sueco. 

Despliegues operacionales 


Bloodhound usados por la RAAF de 1963 con el Escuadrón N º 30 en Darwin, Australia 

Bloodhound de la Fuerza Aérea de la República de Singapur. 

En 1956, el as de la la Batalla de Inglaterra durante la Segunda Guerra Mundial Wing Commander Frederick Higginson DFC DFM fue reclutado y puesto a cargo del nuevo grupo de de misiles guiados de defensa en el interior de Bristol Aviation, encargado de ventas y servicio de los nuevos sistemas. Higginson le concedió un OBE en 1963 por las ventas en el extranjero que el Bloodhound obtuvo, y ascendido a la junta de avión Bristol, en el mismo año. [12] 

El primer despliegue del Bloodhound Mk. I consistió en ocho emplazamientos de misiles:. RAF Dunholme Lodge, Watton Royal Air Force, RAF Marham, Rattlesden Royal Air Force, RAF Woolfox Lodge, Carnaby RAF, Warboys RAF, la Royal Air Force y Breighton Misson RAF con un centro de ensayo de la RAF en North Coates [13] La principal razón de estos sitios están elegidos fue la defensa de los puestos cercanos de bombarderos V. 

Los despliegues de Australia comenzaron con el No. 30 Escuadrón de la RAAF en la Base Williamtown de RAAF en enero de 1961. Un destacamento se formó en Darwin en 1965. En 1968, los misiles Bloodhound Mk. I  estaban obsoletos, y ambos elementos de la escuadra había sido disuelta a finales de noviembre de 1968. 

Los despliegues de Suiza comenzaron en 1964, y en 1967 estaban en funcionamiento seis centros con un total de nueve unidades de disparo. Estos se mantuvieron operativos hasta 1999, cuando fueron retirados del servicio, y el sitio Gubel fue declarado patrimonio histórico nacional. [14] 

Después de la RAF pasó el papel disuasivo nuclear para la Royal Navy en 1970, todos los sistemas de Bloodhound en el Reino Unido fueron retirados y almacenados o transferidos a la RAF para los campos de aviación de Alemania para la defensa con el Escuadrón N º 25. La posibilidad de un ataque sorpresa a bajo nivel por los bombarderos o misiles de crucero llevaron a una reevaluación de las defensas aéreas del Reino Unido, lo que resultó en la formación de Escuadrón Nº 85 en West Raynham el 18 de diciembre de 1975. 

Con el despliegue de los misiles Rapier en Alemania, los Bloodhounds fueron devueltos a Inglaterra en 1983 y se encontraban en operación en cuatro sitios adicionales, Bawdsey, Heath Barkston, Wyton y Wattisham. Estas instalaciones utilizan tanto el radar "fijo" Tipo 87 (Marconi Scorpion) y radares 'móviles' Tipo 86 (Firelight Ferranti) en sus despliegues en Alemania, con un poco de ser montado sobre una torre de 30 pies para mejorar la visibilidad y reducir las reflexiones de tierra. En 1990, cuando la guerra fría terminó los misiles restantes se concentraron en West Raynham y Wattisham con planes para operar hasta el 1995, pero fueron eliminados más tarde en 1991. 

En el sudeste de Asia, el Bloodhound se desplegó con el Escuadrón Nº 65 de la RAF con base en Seletar, Singapur como parte de la Fuerza Aérea del Lejano Oriente de la RAF. Con la retirada de las fuerzas británicas anunciadas en 1968, Singapur compró la totalidad de los activos de Bloodhound del Escuadrón N º 65 y 170 de Singapur establecidos Comando de Escuadrón de Defensa Aérea. El escuadrón fue disuelto y el misil se retiró en una ceremonia en 1994. 



Descripción básica 
El misil principal es un cilindro largo de los marcos de magnesio y la piel de aleación de aluminio con un cono de nariz prominente ojiva en la parte delantera y algunos barco-cola en la parte trasera. Pequeño aluminio cubiertas de madera cropped-delta alas están montados punto medio, proporcionando tono y control de balanceo haciendo pivotar al unísono o de forma independiente con dirección adicional proporcionada por diferencial de alimentación de combustible a cada uno de los chorros de carnero. Dos pequeñas superficies fijas rectangulares fueron montadas en línea con las alas principales, casi en la parte trasera del misil. [6] 

Los motores de elevación se mantienen juntos como un solo conjunto por un anillo de metal en la parte posterior del misil. Cada motor tiene un pequeño gancho en el anillo, así como una similar en la parte frontal que sostiene al cuerpo del misil. Después de la cocción, cuando el empuje de los cohetes cae por debajo del empuje de los estatorreactores ahora iluminadas, el deslizan hacia atrás impulsores hasta que el gancho delantero desenganche del cuerpo del misil. Los potenciadores son libres de girar alrededor de su unión al anillo de metal, y están diseñados para girar hacia el exterior, lejos del fuselaje. En acción, se pliegan abierto como los pétalos de una flor, incrementando en gran medida de arrastrar y tirar de la totalidad de cuatro refuerzo montaje lejos del cuerpo del misil. [15] 

Pequeñas entradas en las raíces de las alas de código auxiliar que sujetan los motores de permitir que el aire en el cuerpo del misil para dos tareas. Dos ram turbinas de aire para viajar turbobombas generar energía hidráulica para el sistema de control del ala, y una bomba de combustible que alimenta los motores. Pequeños tubos de entrada de aire de espolón proporcionar para presurizar los tanques de combustible. Combustible Kerosene se lleva a cabo en dos grandes depósitos de goma en las bahías de bolsa a cada lado de la bahía ala donde las alas se unen. La energía eléctrica fue proporcionada por una batería de sal fundida encendido en el lanzamiento. [6] 

Aunque en las pruebas el Bloodhound había ejecutado golpes directos a objetivos de bombarderos volando a 50.000 pies, [16] como los modelos de producción II tenían ojivas activadas por proximidad diseñados para disparar un aro de varillas de metal y así destruir aviones atacantes sin necesidad de este grado de precisión. [17 ] 

Variantes 

Mk I 
Longitud: 7,7 m 
Peso de Lanzamiento: 2.000 kg 
Alcance: 30 km 
Max. Velocidad: Mach 2,2 
Propulsión 
Principal: 2 × motores estatorreactores Bristol Thor  
Booster: 4 × cohetes de refuerzo Gosling 


Uno de los dos motores estatorreactores Bristol Thor de un misil Bloodhound 

Etiqueta del fabricante de Bristol Thor encuentra cerca del final del negocio del motor estatorreactor Thor 

Mk II 
Longitud: 8,45 m 
Peso de lanzamiento: 
Alcance: 185 km 
Max. Velocidad: Mach 2,7 
Propulsión 
Principales: 2 × motores estatorreactores (mejorado) Thor  
Booster: 4 × cohetes de refuerzo Gosling 

La aceleración del Mk. II puede medirse a partir de los datos de un panel de información en el Museo de Bristol Aeroplane empresa en Kemble Airfield, Kemble, Gloucestershire, donde un completo Bloodhound puede ser visto. La marca de Bloodhound esta cifra refleja que no se da pero es de suponer que el Mark II ya que la velocidad máxima de la Mk. I es Mach 2.2: 
"En el momento en que el misil ha despejado el lanzador que está haciendo 400 mph. Cuando el misil se encuentra a 25 metros del lanzador que ha llegado a la velocidad del sonido (alrededor de 720 millas por hora). Tres segundos después de su lanzamiento, ya que el aumento de cuatro cohetes caen, se ha llegado a Mach 2,5 que es aproximadamente 1.800 mph " 

Mk III 
La planeada Mk III (también conocido como RO 166) es una cabeza nuclear equipado Mark II con un intervalo más largo (alrededor de 75 millas) realizado con motor Ramjet mejorada y más grandes refuerzos. El proyecto, una de varias adaptaciones de los actuales misiles británicos para llevar a los dispositivos nucleares tácticos, fue cancelado en 1960. Hay pruebas de que la intención era "envenenar" las ojivas de armas nucleares transportadas por la fuerza de ataque a través del flujo de neutrones emitido por la cabeza de combate. [18] 

Mk IV 
Esto habría sido una versión móvil de Bloodhound.



Wikipedia