Mostrando las entradas con la etiqueta enjambre de drones. Mostrar todas las entradas
Mostrando las entradas con la etiqueta enjambre de drones. Mostrar todas las entradas

domingo, 25 de agosto de 2024

Ataque aéreo: El implacable resultado de un ataque simultáneo multidireccional

Ataque simultáneo multidireccional


Por Esteban McLaren para FDRA




1. Introducción

Un ataque multifrontal simultáneo es atacar un blanco desde distintas direcciones al mismo tiempo. Es un elemento costoso de conseguir porque exige muchos recursos dado que la fuerza de ataque debe cubrir al menos dos frentes o direcciones y, más difícil aún, debe ser coordinado, es decir todo el movimiento debe hacerse al mismo tiempo. ¿Qué dificultades enfrenta el defensor? La saturación. Defiende un frente y, por costo de oportunidad, desatiende el otro y viceversa. La historia presenta un caso apasionante.

La Batalla de Midway fue un punto de inflexión crucial en la Segunda Guerra Mundial, donde un ataque simultáneo no intencionado de las fuerzas aeronavales estadounidenses desempeñó un papel decisivo. Durante la batalla, los aviones estadounidenses lanzaron ataques secuenciales desde una misma dirección a la vez. Los comandantes de portaaviones llegaron a esquivar la mayoría de estos ataques (¡un capitán lo hizo más de 70 veces en ese fatídico día!), torpedos y bombas caían por las bordas de estos enormes buques pero ni hacían mella en ellos. Sin embargo, una partida de ataque dirigida por el comandante McClusky perdió su rumbo y al volver para re-encausar el ataque lo realizó desde un inesperado Suroeste, coincidiendo con otra partida de ataque dirigida por el teniente Leslie provenía de Noreste al mismo tiempo, sorprendiendo por completo a la flota japonesa. Este ataque simultáneo desde dos flancos diferentes, llevado a cabo principalmente por bombarderos en picado SBD Dauntless, resultó en la destrucción casi inmediata de tres portaaviones japoneses empezando por el Kaga, lo que cambió el curso de la guerra en el Pacífico.

Las consecuencias de este ataque fueron devastadoras para la Armada Imperial Japonesa. La pérdida de cuatro portaaviones, junto con pilotos experimentados y aviones, debilitó gravemente su capacidad operativa. Esta victoria permitió a los Estados Unidos pasar de una posición defensiva a una ofensiva en el teatro del Pacífico, alterando el equilibrio de poder y marcando el inicio del declive de la supremacía naval japonesa.

2. La Batalla de Midway

La Batalla de Midway, ocurrida del 4 al 7 de junio de 1942, es una de las confrontaciones más importantes de la Segunda Guerra Mundial en el Teatro del Pacífico, marcando un punto de inflexión en la guerra. Durante esta batalla, un evento crucial fue el ataque simultáneo de dos formaciones de aviones estadounidenses desde diferentes direcciones, lo que resultó en la devastadora destrucción de los portaaviones japoneses.


2.1 Contexto previo

El 4 de junio de 1942, las fuerzas japonesas, bajo el mando del almirante Isoroku Yamamoto, lanzaron un ataque contra Midway con la esperanza de eliminar la amenaza de los portaaviones estadounidenses y asegurar el dominio en el Pacífico. Los japoneses confiaban en la sorpresa y la superioridad numérica. Sin embargo, gracias a la ruptura del código japonés por parte de la inteligencia estadounidense, los norteamericanos sabían de antemano los planes japoneses y prepararon una emboscada.


2.2 Ataques iniciales y esquiva de los japoneses

En la mañana del 4 de junio, los aviones estadounidenses lanzaron una serie de ataques aéreos desde sus portaaviones USS Enterprise, USS Hornet, y USS Yorktown contra la flota japonesa. Estos ataques iniciales consistieron en oleadas de aviones torpederos (principalmente TBD Devastators) y bombarderos en picado (SBD Dauntless). Los aviones torpederos atacaron primero, pero fueron diezmados por los cazas japoneses y el fuego antiaéreo; casi todos los aviones torpederos fueron derribados, y no lograron impactar a los portaaviones japoneses.

Durante estos primeros ataques, los comandantes de los portaaviones japoneses, como el vicealmirante Chuichi Nagumo, realizaron maniobras evasivas efectivas, logrando evitar los torpedos lanzados por los aviones estadounidenses. La combinación de maniobras hábiles, la protección de cazas Zero, y la falta de coordinación entre las diferentes oleadas de ataque permitieron a la flota japonesa esquivar la destrucción.


2.3 El ataque simultáneo decisivo

Sin embargo, mientras los aviones torpederos estadounidenses mantenían ocupadas a las defensas japonesas volando bajo y atrayendo a los cazas Zeros hacia niveles bajos, una fuerza de bombarderos en picado SBD Dauntless de los portaaviones USS Enterprise y USS Yorktown llegó a la escena desde una dirección diferente y en altitud. Liderados por los comandantes de escuadrón como el Teniente Comandante Wade McClusky y el Capitán de Corbeta Max Leslie, estos aviones aprovecharon que los cazas japoneses estaban ocupados a baja altura y que las maniobras evasivas japonesas habían dejado a los portaaviones en posiciones vulnerables.

En un giro del destino, los bombarderos en picado atacaron simultáneamente desde dos direcciones distintas: desde el noroeste y el sudoeste, tomando por sorpresa a los japoneses. Son las líneas de ataque 1 y 2 convergiendo a los blancos mientras sorpresivamente aparece una enorme ala de ataque 3 desde el suroeste, como se ilustra debajo. No deje de ver los dos videos añadidos para terminar de comprender el panorama de esta fantástica batalla aeronaval. Los portaaviones Akagi, Kaga, y Soryu fueron impactados casi simultáneamente en cuestión de minutos. Es que al querer esquivar los torpedos y bombas lanzadas por el grupo aéreo desde el Noreste, como lo habían hecho toda la mañana, quedaban alineados para los ataques provenientes desde el Suroeste. No había escapatoria. Las bombas penetraron en los hangares de los portaaviones, donde los aviones japoneses estaban siendo rearmados y repostados, lo que resultó en explosiones masivas que causaron incendios incontrolables. Este ataque decisivo resultó en la destrucción de tres portaaviones japoneses en rápida sucesión.


Más tarde, ese mismo día, un cuarto portaaviones japonés, el Hiryu, lanzó un contraataque que logró dañar severamente al USS Yorktown, pero fue finalmente localizado y destruido por aviones estadounidenses. Fue el fin de la Kidō Butai, la aviación naval imperial japonesa.



2.4 Consecuencias

La pérdida de los cuatro portaaviones japoneses en Midway fue un golpe devastador para la Armada Imperial Japonesa, ya que no solo perdió buques clave, sino también pilotos experimentados y aviones. La batalla cambió el equilibrio de poder en el Pacífico, permitiendo a los Estados Unidos pasar a la ofensiva en el teatro de operaciones.

El ataque simultáneo desde diferentes direcciones durante la Batalla de Midway se considera uno de los momentos más decisivos de la Segunda Guerra Mundial, demostrando la importancia de la coordinación y la sorpresa en el combate aéreo-naval. De todos modos, debe recalcarse que esta simultaneidad fue azarosa: el grupo que atacaba desde el Sudoeste simplemente se había perdido y volvía sobre sus pasos.




3. Pesadilla en el mar

Imaginen una operación naval a mar abierto. En dicha locación existe un alto potencial de ataques aéreos con bombas (tontas o LGB) o misiles antibuque (AShM) enemigos. Sin embargo, el infierno de Midway podría emerger personalizado en nuevos misiles AShM o misiles de crucero. Las nuevas amenazas, gracias a la digitalización, pueden hasta incluir diseño de guiado con inteligencia artificial. Por lo tanto, ni siquiera un humano estaría implicado en su gestión. 

Un capitán de un buque capital moderno (como un destructor, crucero o portaaviones) enfrentado a un ataque simultáneo de múltiples de AShM desde diferentes direcciones tendría a su disposición una combinación de capacidades de defensa avanzada, obviamente imposibles de obtener en el contexto tecnológico de la Segunda Guerra Mundial. Estas capacidades están diseñadas para detectar, rastrear y neutralizar las amenazas antes de que impacten en el buque. Adentrémonos en ellas.

3.1. Detección y seguimiento

  • Radar de vigilancia de largo alcance: Un radar como el AN/SPY-1 (utilizado en el sistema Aegis) o el más moderno AN/SPY-6, proporciona una cobertura de 360 grados, permitiendo la detección y seguimiento simultáneo de múltiples amenazas desde diferentes direcciones.
  • Sistemas de sensores electro-ópticos e infrarrojos (EO/IR): Estos sistemas complementan al radar al proporcionar capacidades de detección pasiva, cruciales para identificar misiles furtivos o para operar en entornos de alta interferencia electrónica.

3.2. Contramedidas electrónicas (ECM)

  • Jammers y perturbadores electrónicos: El buque puede emplear sistemas de guerra electrónica para intentar desviar o desorientar los misiles entrantes. Esto podría incluir la emisión de señales de interferencia (jamming) para interrumpir los sistemas de guía de los misiles o el uso de señuelos electrónicos que crean falsos blancos para confundir los sistemas de radar del AShM.

3.3. Defensa antimisil de capa externa

  • Misiles antiaéreos de largo alcance: Misiles como el SM-6 (Standard Missile 6) en un sistema Aegis pueden ser lanzados para interceptar los misiles antibuque a larga distancia. Estos misiles tienen la capacidad de maniobrar a gran velocidad y de interceptar misiles entrantes incluso a altas velocidades (como los misiles supersónicos o hipersónicos).
  • Sistemas integrados de defensa en red: En un grupo de combate, como un grupo de ataque de portaaviones (CSG), otros buques también pueden contribuir a la defensa, lanzando misiles interceptores desde diferentes posiciones para aumentar la probabilidad de interceptación.


3.4. Defensa de capa media

  • Misiles de defensa de punto o corta distancia: Misiles como el RIM-162 ESSM (Evolved Sea Sparrow Missile) se encargan de la defensa en un rango medio, interceptando misiles que logran penetrar las defensas de largo alcance.
  • Cañones CIWS (Close-In Weapon Systems): Sistemas como el Phalanx CIWS o el Goalkeeper, que son cañones de alta cadencia de disparo, proporcionan la última línea de defensa, disparando ráfagas rápidas de proyectiles para destruir misiles entrantes a muy corta distancia.

3.5. Contramedidas activas

  • Señuelos lanzables (chaff y flare): El buque puede lanzar señuelos físicos como chaff (que dispersa tiras de metal para confundir el radar del misil) y flares (que emiten calor para desviar misiles guiados por infrarrojos).
  • Decoys Remolcados: Dispositivos como el Nulka, un señuelo activo lanzado que imita la firma radar del buque, pueden ser desplegados para atraer misiles lejos del barco real.

3.6. Maniobras evasivas:

  • Maniobras de alta velocidad: Aunque limitado por las capacidades físicas del buque, el capitán podría ordenar maniobras evasivas para intentar evitar que los misiles logren un impacto directo, especialmente en caso de que los misiles se acerquen desde diferentes ángulos.

3.7. Coordinación con la flota:

  • Defensa coordinada de grupo de combate: En un escenario de combate real, el buque capital estaría operando como parte de un grupo de combate, con otros buques y aeronaves de apoyo que proporcionarían una capa adicional de defensa. Por ejemplo, destructores o fragatas pueden actuar como piquetes de radar para interceptar misiles antes de que lleguen al buque capital.
Estas condiciones no están ampliamente difundidas entre todas las armadas del Mundo. Estos equipos se encuentran disponibles son en las armadas más modernas, incluso sólo en el US Navy, la cual es la mayor armada del Mundo. Es decir, un combatiente de superficie promedio en el Mundo quedaría sin poder emplear alguna de esas "capas" siendo altamente probable un impacto de un AShM sobre su estructura sin que mucho se pueda hacer.

3.8 Resumen

El capitán de un buque capital moderno tiene a su disposición una serie de capas de defensa que, cuando se utilizan de manera conjunta y efectiva, ofrecen una protección robusta contra ataques coordinados de misiles antibuque desde múltiples direcciones. La clave del éxito reside en la detección temprana, la rápida decisión para desplegar contramedidas, y la capacidad de coordinar todas estas defensas en un entorno de combate de alta intensidad. A pesar de las avanzadas defensas, un ataque masivo y bien coordinado de múltiples AShM sigue siendo una amenaza seria, subrayando la importancia de la redundancia y la preparación en la guerra moderna.



¿Cómo repeler un ataque multidireccional simultáneo? La mayoría de las veces, no puedes.

Perfiles de ataque del AShM Penguin y misil de crucero Tomahawks

Nótense la posibilidad de realizar curvas y explorar blancos para detectar y optimizar el perfil de ataque.






4. Algoritmos de ataque simultáneo

Sin embargo, la misma digitalización puede llegar a elementos de defensa mucho más pequeños, para blanco muy puntuales, en escalas también precisamente definidas. Existen sistemas avanzados de dirección de misiles y drones diseñados para coordinar ataques desde múltiples direcciones de manera simultánea, lo que incrementa las posibilidades de éxito en la misión. Este tipo de ataques coordinados se emplea especialmente en operaciones contra objetivos fuertemente defendidos, donde el objetivo es saturar o superar las defensas enemigas.

4.1 Ejemplos de tales sistemas

  1. Sistemas de enjambre (swarming):

    • Los drones pueden operar en enjambres, donde múltiples unidades trabajan de manera coordinada para atacar desde diferentes direcciones. Cada dron puede ser autónomo o controlado en red, compartiendo información en tiempo real para ajustar su ataque. El enjambre puede saturar las defensas enemigas al atacar simultáneamente desde varios ángulos. Uno puede recordar en una escena de Matrix Revolutions donde una evento así se observa. Y es sobrecogedor, por cierto.
  2. Misiles de ataque coordinado:

    • Misiles como el Tomahawk Block IV o el AGM-158 JASSM tienen capacidades avanzadas de navegación y control que les permiten realizar ataques coordinados. Estos misiles pueden ser programados para seguir diferentes trayectorias y llegar al objetivo desde varias direcciones al mismo tiempo, lo que complica la defensa.



  3. Ataques de saturación:

    • En este tipo de ataque, múltiples misiles son lanzados en un patrón diseñado para saturar las defensas enemigas. Los misiles pueden ser programados para atacar desde diferentes ángulos, alturas y velocidades, creando una situación en la que es difícil para los sistemas de defensa aérea interceptar todos los misiles entrantes.
  4. Guerra de enjambre con drones de ataque:

    • En contextos modernos, los drones kamikaze o loitering munitions (municiones merodeadoras) como el Harop o el Switchblade pueden ser desplegados en masa. Estos drones pueden ser programados para atacar simultáneamente desde múltiples direcciones, lo que aumenta la probabilidad de que al menos uno logre alcanzar el objetivo.

 




Google trabaja con drones con inteligencia artificial que permitan discernir blancos y decidir ataques


Una discusión muy técnica de cómo se pueden programar enjambres de drones y coordinarlos para ataques y otras misiones

4.2 Principio operativo

La coordinación, sincronización y redundancia al ataque se combinan para forzar casi a un resultado implacable final: el blanco será alcanzado y destruido.

  • Coordinación y sincronización: Estos sistemas dependen en gran medida de una coordinación y sincronización precisa, generalmente mediante comunicaciones avanzadas y sistemas de navegación como GPS, INS (Sistema de Navegación Inercial), o incluso tecnologías emergentes como la inteligencia artificial.
  • Redundancia de ataque: Al atacar desde diferentes ángulos y direcciones, se reduce la probabilidad de que un solo sistema de defensa sea capaz de neutralizar todas las amenazas entrantes, asegurando así que al menos uno de los misiles o drones alcance el objetivo.

Estos enfoques son fundamentales en la guerra moderna, especialmente contra adversarios que cuentan con sistemas de defensa aérea avanzados.

5. Conclusión

La capacidad para ejecutar ataques multidireccionales simultáneos, ya sea con misiles antibuque, misiles de ataque a blancos terrestres o drones, representa un avance crucial en la guerra moderna. Esta estrategia se basa en la coordinación de múltiples dispositivos de ataque que convergen sobre un mismo objetivo desde diferentes direcciones al mismo tiempo. Su importancia radica en su capacidad para desbordar las defensas enemigas, minimizar la posibilidad de interceptación y maximizar el impacto del ataque. La importancia en el campo de batalla moderno puede enumerarse así:

  1. Saturación de defensas: Un ataque desde múltiples direcciones complica significativamente la tarea de las defensas aéreas o antimisiles del adversario. Las defensas tradicionales están diseñadas para interceptar amenazas que provienen de una o pocas direcciones al mismo tiempo. Al enfrentarse a un ataque multidireccional, los sistemas defensivos pueden ser saturados, haciendo que algunas de las armas logren penetrar y alcanzar sus objetivos.

  2. Reducción de la efectividad de los contramedidas: Las contramedidas electrónicas y de defensa activa, como sistemas de interferencia o misiles interceptores, son menos eficaces cuando deben lidiar con múltiples vectores de ataque simultáneos. Esta multiplicidad obliga al enemigo a dividir sus recursos, aumentando las posibilidades de que uno o más de los vectores de ataque tengan éxito.

  3. Confusión y desorganización del enemigo: Un ataque multidireccional también puede generar confusión en las filas enemigas. La necesidad de responder a amenazas que provienen de diferentes direcciones puede desorganizar la defensa y dificultar la coordinación efectiva de la respuesta.

  4. Destrucción de blancos fuertemente defendidos: Los objetivos bien defendidos, como instalaciones militares clave, centros de comando y control, o buques de guerra, requieren ataques con alto grado de precisión y potencia. La capacidad de golpear simultáneamente desde diferentes direcciones aumenta la probabilidad de que se puedan neutralizar o destruir estos blancos. Incluso si parte de la defensa logra interceptar algunos misiles o drones, otros pueden seguir su curso y alcanzar el objetivo.

Un ejemplo claro de la efectividad de esta táctica se observó en el ataque a las instalaciones petroleras de Aramco en Arabia Saudita en 2019. En este ataque, una combinación de misiles de crucero y drones fueron lanzados desde diferentes direcciones hacia las instalaciones. Este ataque coordinado saturó las defensas antiaéreas saudíes, que no pudieron interceptar todas las amenazas, resultando en daños significativos.

Otro ejemplo es el uso de drones suicidas (también conocidos como loitering munitions) en el conflicto de Nagorno-Karabaj en 2020, donde Azerbaiyán utilizó enjambres de drones para atacar simultáneamente desde diferentes ángulos, superando las defensas armenias y destruyendo posiciones fortificadas y sistemas antiaéreos.

Un tercer ejemplo, más cercano a nosotros, lo presenta el protocolo de asalto de posiciones a trincheras argentinas por parte de infantes de marina británicos (Royal Marines). Los asaltantes se distribuían de a tres cubriendo un amplio abánico frente a la posición argentina y realizaban la corrida. Los defensores al emerger recibían fuego de múltiples direcciones, lo que los confundía y daba ventaja al atacante.

Finalmente, la capacidad de ejecutar ataques multidireccionales simultáneos, ya sea mediante misiles, drones o cualquier otra fuerza o una combinación de ellas, es una herramienta poderosa en el arsenal militar moderno. Este tipo de ataques no solo aumenta la probabilidad de éxito contra objetivos bien defendidos, sino que también representa una evolución en las tácticas de guerra que busca maximizar el impacto y minimizar la capacidad de respuesta del adversario. A medida que la tecnología avanza y los sistemas de armas se vuelven más autónomos y precisos, es probable que esta táctica se convierta en un estándar en los conflictos futuros. Imagine el lector si el Comando de Aviación Naval hubiese contado con esa capacidad en sus Exocet lo inexorable que hubiese el ataque a un blanco altamente protegidos como los portaaviones del Task Force británica en Malvinas.

viernes, 17 de mayo de 2024

Israel-Irán: Intercepción de drones iraníes

Aviones de combate israelíes interceptan drones y misiles iraníes




Vídeo: Aviones de combate israelíes interceptando drones y misiles iraníes


Las Fuerzas de Defensa de Israel publicaron vídeos de aviones de combate israelíes interceptando misiles de crucero y drones iraníes. Algunos de estos videos fueron compartidos en las redes sociales. Vea uno de ellos a continuación.


domingo, 24 de marzo de 2024

Invasión: Ucrania usa miles de microfónos en red para detectar drones rusos

Ucrania utiliza miles de micrófonos en red para rastrear drones rusos


Ucrania está utilizando sensores acústicos para detectar y cazar amenazas entrantes, y ahora el ejército estadounidense quiere probar el sistema
Por Joseph Trevithick || The War Zone


Ucrania está utilizando una red formada por miles de sensores acústicos en todo el país para ayudar a detectar y rastrear los drones kamikazes rusos entrantes, alertar a las defensas aéreas tradicionales con anticipación y también enviar equipos ad hoc de caza de drones para derribarlos. Esto es según el alto oficial de la Fuerza Aérea de EE.UU. en Europa, quien también dijo que el ejército de EE.UU. ahora está buscando probar esta capacidad para ver si podría ayudar a satisfacer sus propias demandas de formas adicionales de monitorear persistentemente y enfrentarse a las amenazas de drones.

El general James Hecker, jefe de las Fuerzas Aéreas de EE.UU. en Europa (USAFE), así como de las Fuerzas Aéreas de África (AFAFRICA) y el Comando Aéreo Aliado de la OTAN , proporcionó detalles sobre la red de sensores acústicos de Ucrania y cuestiones relacionadas con la defensa aérea y antimisiles en una mesa redonda de prensa. al que asistieron The War Zone y otros medios hoy. Esta reunión tuvo lugar al margen del Simposio de Guerra de la Asociación de Fuerzas Aéreas y Espaciales de este año , que se inauguró hoy.
Los miembros de un equipo ucraniano de caza con drones en la región de Mykolayiv muestran un UAZ-452 modificado armado con dos ametralladoras PKT sobre una montura improvisada.


Los miembros de un equipo ucraniano de caza con drones en la región de Mykolayiv muestran un UAZ-452 modificado armado con dos ametralladoras PKT sobre una montura improvisada. Vladimir Shtanko/Agencia Anadolu vía Getty Images

"A nivel no clasificado, Ucrania ha hecho algunas cosas bastante sofisticadas para obtener [una] persistente imagen ISR [inteligencia, vigilancia y reconocimiento]" de "objetos de baja altitud", explicó Hecker. Esto ahora incluye un sistema de sensores acústicos que utiliza micrófonos diseñados para captar y amplificar el ruido ambiental, añadió.

"Piense si tiene una serie de sensores, piense en su teléfono celular, está bien, con energía para que no se apague, ¿verdad? Y luego coloca un micrófono para hacer que la acústica sea más fuerte de los UAV unidireccionales. que van por encima", explicó Hecker. "Y hay... 6.000 de estas cosas en todo el país. Han tenido éxito en poder detectar vehículos aéreos no tripulados unidireccionales como los Shahed 136 y ese tipo de cosas".


Un dron ruso Shahed-136 sobrevolando Ucrania. Foto de SERGEI SUPINSKY/AFP vía Getty Images

Los drones kamikaze como el Shahed-136 pueden tener motores relativamente pequeños, pero aun así producen una cantidad de ruido significativa y, a menudo, aterradora , como se escucha en los videos a continuación.




Los ucranianos han podido utilizar los datos del sensor acústico "para poder rastrearlos y luego eventualmente juntarlos, enviar esa imagen a un móvil... equipo que está más lejos, que ahora lo derriba con AAA [anti -artillería aérea], [que] entrenan a un hombre en seis horas sobre cómo utilizarla", añadió Hecker.

No está claro cómo se difunde la información del sensor acústico, pero esto bien podría implicar aprovechar una red ad hoc de detección de drones existente que Ucrania ha implementado desde hace algún tiempo y que permite a los voluntarios publicar alertas a través del servicio de mensajería en línea Telegram.

La mención directa de Hecker de AAA (artillería antiaérea), un término utilizado para describir varios tipos de armas antiaéreas, refleja comentarios más amplios que hizo hoy sobre la rentabilidad de esas armas contra los drones. Volveremos sobre eso más tarde.

La mayoría de los equipos de lucha contra drones de Ucrania dependen en gran medida de sistemas de armas improvisados que normalmente consisten en varios tipos de ametralladoras y cañones automáticos montados en diferentes tipos de vehículos ligeros. Sus medios para detectar y rastrear drones, especialmente de noche, generalmente se limitan a capacidades muy localizadas como visión nocturna y óptica térmica, punteros láser y reflectores.






Los detalles sobre la red de sensores acústicos ucranianos han sido "informados a varias personas, incluida la Agencia de Defensa de Misiles", añadió Hecker. "Estamos considerando hacer algunas pruebas para ver si es algo que podemos exportar a la OTAN".

Hecker dijo que este tipo de capacidad de sensor acústico también podría tener aplicaciones fuera de la OTAN y potencialmente contra otras categorías de amenazas aéreas más allá de los drones. Vale la pena señalar que antes de la adopción generalizada del radar, el ejército estadounidense y otras fuerzas armadas de todo el mundo utilizaban varios tipos de sistemas diseñados para detectar aeronaves entrantes en función de su firma acústica. Al final de la Segunda Guerra Mundial, estos sistemas habían caído en gran medida en desuso.

Un sistema de localización de sonido de aviones del Cuerpo de Artillería Costera de EE. UU., a la izquierda, así como un reflector y un camión de transporte, en algún lugar de los Estados Unidos en 1932. Cuerpo de Artillería Costera de EE. UU.

Sin embargo, muchas amenazas aéreas modernas, incluidos pequeños drones y misiles de crucero de vuelo bajo, y aviones y misiles furtivos con y sin tripulación, presentan desafíos importantes incluso para los radares de la generación actual . El general Hecker mencionó por primera vez el interés del ejército estadounidense en la red de sensores acústicos de Ucrania en la mesa redonda de hoy mientras hablaba de los desafíos que enfrenta la OTAN para mantener una imagen ISR persistente cuando se trata de cosas como drones kamikaze y misiles de crucero.

"Lo que hace, ya sabes, cuando está en el aire, nos dará una imagen persistente, una imagen ISR, hasta baja altitud, donde operan muchos de estos vehículos aéreos no tripulados unidireccionales y misiles de crucero", dijo Hecker sobre el E-7A. Aviones aerotransportados de alerta temprana y control de cola de cuña que la Fuerza Aérea y la OTAN están en proceso de adquirir. "Y tiene una capacidad bastante buena en el rango que le permite detectar ese tipo de amenazas".

"Desafortunadamente, [los E-7] no saldrán de la línea a partir de mañana", continuó. "Así que tenemos que buscar... soluciones provisionales".


Una representación de un futuro avión de control y alerta temprana aerotransportado E-7A Wedgetail de la Fuerza Aérea de EE. UU. Fuerza Aérea de los EE.UU.

Sensores acústicos como los que Ucrania está empleando ahora podrían ser una de esas soluciones provisionales, y que también es sustancialmente más barata de implementar que algo como una flota de E-7.

Hecker también mencionó los aerostatos atados con "una carga útil que tiene la capacidad de detectar estos UAV unidireccionales" como algo que esperaba que fuera "entregado" dentro de seis meses a un año. "Y ahora lo consigues durante mucho tiempo, ¿verdad?... puede permanecer elevado prácticamente sin parar, a menos que los vientos se pongan muy difíciles, y es posible que tengas que enrollarlo durante un rato".

No está inmediatamente claro si se refería a una capacidad que el ejército estadounidense planea desplegar en Europa o en algún otro lugar, o a algo que podría estar sucediendo en otros lugares dentro de la OTAN. El gobierno de EE. UU. aprobó recientemente una posible venta de sistemas de vigilancia aérea basados ​​en aerostatos a Polonia, sobre la cual puede leer más aquí.


Independientemente de cómo se haga, "si podemos obtener esta imagen persistente del aire, entonces podremos predecir qué tan rápido van [y] en qué rumbo se encuentran", anotó Hecker. "Entonces podemos usar cosas que nos coloquen en el lado correcto de la curva de costos, como AAA... algo de lo que probablemente no hemos hablado en mucho tiempo. Pero [es] muy rentable usar AAA [para ] derribar estas cosas [como los drones kamikaze]".

"Creo que veremos que esto prolifera cada vez más, lo que hace que la importancia de encontrar una solución de bajo costo para acabar con estas cosas" sea aún más pronunciada, según Hecker. "Estoy trabajando duro con la industria para... encontrar una solución que nos coloque en el lado correcto de la curva de costos. Así que no tomaremos un misil de 700.000 dólares y derribaremos un dron de 5.000 dólares".

Hecker citó específicamente el uso de drones kamikazes de largo alcance por parte de grupos respaldados por Irán, incluidos los hutíes en Yemen, contra fuerzas estadounidenses en tierra y mar en todo el Medio Oriente en las últimas semanas como ejemplos de cómo esta amenaza ya se está expandiendo en escala y alcance. Apenas el 28 de enero, un dron kamikaze mató en particular a tres miembros del servicio estadounidense en una base avanzada llamada Torre 22 en Jordania, cerca de la frontera con Siria.


Una imagen satelital de la Torre 22 en Jordania. Google Earth

Los hutíes también han estado lanzando drones kamikazes, así como misiles balísticos y de crucero , contra objetivos en Israel y contra buques de guerra y buques comerciales extranjeros en el Mar Rojo y sus alrededores.

Hecker incluso señaló que el creciente uso de drones kamikazes ha llamado la atención del ejército estadounidense. También destacó "cosas no especificadas para distraer un IADS [sistema integrado de defensa aérea] que [son] relativamente baratas", cuando se le preguntó sobre otras capacidades que se están empleando en Ucrania ahora y que podrían ser de interés para las fuerzas estadounidenses. No está claro si este comentario sobre las capacidades de señuelo se refiere a las que los ucranianos , los rusos o ambos han estado empleando en el conflicto, un tema que The War Zone ha estado siguiendo de cerca . El general podría incluso haberse referido al uso de drones kamikaze como señuelos, una función adyacente para la que muchos de estos diseños serían adecuados, como hemos destacado en el pasado . Simplemente usar a los Shahed para probar rutas hacia áreas objetivo y estimular las defensas aéreas enemigas a lo largo del camino, de modo que sistemas de gama alta, como misiles de crucero, puedan ser enviados tras ellos de una manera más fácil de sobrevivir es una táctica conocida.

Es importante recordar que, como destaca habitualmente The War Zone , la amenaza que representan varios niveles de drones para objetivos dentro y fuera de los campos de batalla tradicionales ha sido real durante años y sigue creciendo. El ejército estadounidense sigue intentando en gran medida ponerse al día con esta realidad.

Quizás el sistema de sensores acústicos de "regreso al futuro" de Ucrania pueda convertirse en una nueva forma a corto plazo para que el ejército estadounidense avance en la lucha contra la amenaza de los drones, además de proporcionar una imagen ISR más persistente para los defensores aéreos en general, especialmente cuando Se trata de objetivos pequeños y de bajo vuelo.

viernes, 6 de agosto de 2021

USAF: Muestra a THOR, un arma que derriba a todos los drones al instante


Una nueva arma de la Fuerza Aérea acabará con los enjambres de drones con solo presionar un botón


"Lo he visto en acción y es realmente impresionante".

Por David Roza | Task and Purpose


Una de las mayores amenazas para las tropas estadounidenses en el extranjero no es un caza furtivo, un misil nuclear o un ciberataque masivo. Es un enjambre de drones baratos que pueden abrumar los costosos sistemas de defensa que las tropas tienen a mano ahora.

"Estoy hablando del [drone] que puedes comprar en Costco ahora mismo en los Estados Unidos por mil dólares, cuatro quad, helicópteros o algo así que se puede lanzar y volar", dijo el general de la marina Kenneth McKenzie. , dijo el verano pasado el jefe del Comando Central de Estados Unidos. "Y con modificaciones muy simples, se puede convertir en algo que pueda dejar caer un arma como una granada de mano u otra cosa".
En cantidades suficientes, esos drones pueden espiar bases amigas, destruir infraestructura y atacar al personal, explicó el Laboratorio de Investigación de la Fuerza Aérea en un video reciente. ¿Cómo? Porque las ametralladoras no tienen el alcance o la precisión para destruir a los ágiles voladores; los misiles antiaéreos son demasiado caros para usar en dispositivos baratos; y la mayoría de las bases militares no tienen suficientes misiles para destruir un enjambre completo.

Ingrese a Thor, el dios nórdico del trueno, que es el homónimo de una de las armas más nuevas de la Fuerza Aérea. Si bien el respondedor operativo táctico de alta potencia (THOR) de la Fuerza Aérea puede no parecer un héroe, podría salvar el día para las tropas estadounidenses si sus puestos de combate lejanos son atacados por cientos de drones enemigos baratos de estilo kamikaze.



THOR no es mucho para mirar: el arma consiste en una gran antena parabólica montada en la parte superior de una caja de envío de 20 pies de largo. Pero la simplicidad es una virtud, ya que el arma puede transportarse fácilmente a bordo de un avión de transporte C-130 y montarse en tres horas por una tripulación de dos, según el laboratorio de Investigación de la Fuerza Aérea, que lidera el desarrollo de THOR.

Una vez que THOR está configurado, puede detectar una amenaza entrante y disparar silenciosamente un rayo de energía para derribar a los drones en un área de objetivo amplia, exactamente como lo que podría encontrar en un enjambre de drones. El rayo es un microondas de alta potencia que activa instantáneamente un efecto contraelectrónico en el dron objetivo. AFRL se jactó de que el sistema eliminó cientos de drones en pruebas del mundo real. Ese escenario del mundo real puede haber sido en algún lugar de África, donde la Fuerza Aérea probó THOR a partir de diciembre.

"Lo he visto en acción y es realmente impresionante", dijo en ese momento el científico jefe de la Fuerza Aérea Richard Joseph.

La Fuerza Aérea ha estado probando THOR desde al menos 2019, y ahora la sucursal quiere mejorarlo aún más. La semana pasada, el Laboratorio de Investigación de la Fuerza Aérea anunció que quiere desarrollar Mjolnir (pronunciado mee-yol-neer), un arma que hará lo mismo que THOR pero a un nivel superior. En la mitología nórdica, Mjolnir es el martillo de Thor, con el que mata a muchos grandes enemigos.

"Debido a que THOR tuvo tanto éxito, queríamos mantener el nombre del nuevo sistema en la familia THOR", dijo Amber Anderson, gerente del programa THOR, en un comunicado de prensa sobre Mjolnir.

Mjolnir utilizará la misma tecnología, pero será más avanzado en términos de "capacidad, confiabilidad y preparación de fabricación", explicó el Laboratorio de Investigación de la Fuerza Aérea en un comunicado de prensa reciente. Esa última parte, "preparación para la fabricación", significa que la sucursal espera que las empresas privadas ayuden a la Fuerza Aérea a producir "grandes cantidades" del sistema.

El laboratorio de la Fuerza Aérea espera entregar un prototipo de Mjolnir para 2023, pero cuanto antes mejor, ya que los principales pensadores militares ya están haciendo sonar las alarmas sobre los adversarios de Estados Unidos que desarrollan tecnología de enjambres de drones.

“Cualquiera puede comprar en línea drones pequeños, totalmente autónomos y programables por GPS por unos pocos cientos de dólares”, escribió el Center for New American Security en un comunicado de prensa reciente. "Equipados con pequeños explosivos, armas químicas o biológicas, podrían convertirse en armas de precisión de corto alcance".


El 11 ° Regimiento de Caballería Blindada y la Oficina de Gestión de Sistemas de Amenazas operan un enjambre de 40 drones para probar las capacidades de las unidades de rotación durante la batalla de Razish, Centro Nacional de Entrenamiento el 8 de mayo de 2019 (Foto del Ejército de EE. UU. Por Pv2 James Newsome).

Hace solo dos años, los combatientes hutíes en Yemen usaron drones para volar más allá de los sistemas de defensa de misiles de Arabia Saudita y atacar las instalaciones de procesamiento de petróleo en Khurais y Abqaiq, la instalación de este tipo más grande del mundo. El ataque hizo que los precios del petróleo se dispararan y fue una llamada de atención para los expertos en seguridad nacional.

"Fue la primera instancia de un ataque masivo con drones y el mayor número de drones que creo que hemos visto utilizar a actores no estatales simultáneamente en una operación de combate", Paul Scharre, vicepresidente del Center for New American Security y un experto en armas autónomas, dijo a The Guardian.

En 2017, los combatientes de ISIS también utilizaron drones pequeños disponibles comercialmente para lanzar rondas de mortero sobre las fuerzas de seguridad iraquíes durante la batalla por Mosul. El otoño pasado, los drones también fueron noticia por su papel en la guerra entre Armenia y Azerbaiyán por la región de Nagorno-Karabaj.

"[Los vehículos aéreos no tripulados] se integraron operativamente con los incendios de aviones tripulados y artillería terrestre, pero también utilizaron con frecuencia sus propios artefactos explosivos para destruir varios activos militares de alto valor", incluidos los tanques armenios T-72 y las defensas aéreas S-300, según a un análisis del conflicto de Nagorno-Karabaj por el Centro de Estudios Estratégicos e Internacionales. Estados Unidos, con sus aviones y barcos multimillonarios, teme que sus costosas plataformas puedan sufrir un destino similar.

“Aunque un dron individual de bajo costo puede ser impotente contra un sistema de alta tecnología como el caza furtivo F-35, un enjambre de tales drones podría potencialmente abrumar a los sistemas de alta tecnología, generando ahorros de costos significativos y potencialmente dejando obsoletas algunas plataformas actuales. ”, Escribió el Servicio de Investigación del Congreso en un informe de 2020.



Para contrarrestar tal amenaza, el ejército necesita un arma que pueda dar en el blanco y no se quede sin munición cuando se acerque el enjambre. Las redes o escopetas pueden ser opciones prometedoras, pero esos métodos son efectivos solo dentro de un rango de unas pocas docenas de metros, dijeron los investigadores en un informe reciente titulado Directed Energy Futures 2060. El rango de THOR sigue sin estar claro, pero los investigadores dijeron en el informe que el contra-dron Las armas de energía dirigida tienen un alcance de aproximadamente un kilómetro.

Aunque THOR es un arma de energía dirigida, no es lo mismo que un láser, dijo Breaking Defense. Un láser puede derribar un dron a la vez, pero THOR puede aplastar enjambres enteros en un solo disparo.

"Si los láseres anti-drones son como rifles de francotirador, las armas de microondas son como escopetas llenas de perdigones", escribió el sitio el año pasado.

Pero puede haber armas de energía anti-drones aún más locas bajando por la pica. El objetivo de un sistema de armas de energía dirigida es producir un sistema contra misiles y contra drones que sea tan efectivo, rápido y asequible que básicamente actúe como un campo de fuerza contra las amenazas entrantes, según el informe Directed Energy Futures 2060. No es como los escudos deflectores de Star Wars, pero si detiene las amenazas, ¿cuál es la diferencia?

"Estamos pintando con trazos amplios, pero nos sumergimos en cómo serán las misiones del futuro", dijo Jeremy Murray-Krezan, científico en jefe adjunto de energía dirigida del Laboratorio de Investigación de la Fuerza Aérea, según Breaking Defense. "La tecnología no es del todo Star Wars, pero nos estamos acercando".

jueves, 11 de febrero de 2021

Tecnología naval: Nuevos sonares ven a submarinos desde el cielo

Un nuevo sonar "ve" submarinos desde el aire y promete transformar la guerra antisubmarina

El Snorkel




Un dron volador detecta objetivos submarinos utilizando el sonar PASS: pulsos de láser producen ondas sonoras

Investigadores de la Universidad de Stanford han desarrollado un nuevo tipo de sonar para superar el problema antes insuperable de ver bajo el agua desde el aire. El sonido no viaja fácilmente entre el aire y el agua: hay una pérdida de 65 decibelios, lo que significa una disminución de aproximadamente un millón de veces en la intensidad, lo que hace que sea virtualmente imposible captar reflejos de sonido del aire. La nueva tecnología puede mapear el lecho marino y potencialmente detectar minas, submarinos y otros objetivos submarinos desde aviones.

Actualmente, las únicas formas de utilizar el sonar desde un avión son las boyas de sonar (sonoboyas) que se lanzan al agua o el sonar de inmersión que se baja a la superficie del mar desde un helicóptero en vuelo estacionario. El helicóptero no puede moverse mientras usa el sonar de inmersión, por lo que tiene que comprobar un punto, subir el sonar, volar a otro lugar, volver a bajar el sonar, etc.

Por el contrario, el nuevo sistema de sonda fotoacústica aerotransportada o PASS, desarrollado en Stanford con fondos de la Marina de los EE. UU., funcionará desde un avión en movimiento.

Nuestra visión de la tecnología propuesta es capturar imágenes continuamente mientras el vehículo en el aire vuela sobre el agua”, dijo a Forbes el investigador de Stanford Aidan Fitzpatrick. "Similar a cómo funcionan los sistemas de radar de apertura sintética o los sistemas de sonar de apertura sintética en el agua".

PASS combina dos tecnologías avanzadas para lograr esta hazaña: sonido generado por láser y sensores de sonido novedosos.

Un dron volador detecta objetivos submarinos utilizando el sonar PASS: pulsos de láser producen ondas sonoras 

Un pulso de láser corto calienta la superficie del agua, lo que hace que se expanda rápidamente y produzca una onda de sonido. El sonido se irradia y se refleja desde el lecho marino o los objetos sumergidos, como una fuente de sonar convencional. Esto elimina la pérdida de intensidad al pasar del aire al agua.

PASS necesita una detección de sonido extremadamente sensible; todavía tiene que hacer frente a la pérdida de sonido en el retorno del agua al aire. La mayoría de los sensores de sonido actuales son piezoeléctricos, basados ​​en cerámica que generan un potencial eléctrico cuando el sonido los golpea. PASS utiliza diferentes sensores conocidos como transductores ultrasónicos capacitivos micromecanizados (CMUT). Estos son diminutos condensadores micro-mecanizados que constan de dos placas paralelas delgadas una cerca de la otra. Cualquier perturbación de las placas, como la vibración de una onda de sonido, cambia las propiedades eléctricas del condensador que se pueden detectar fácilmente.

Fitzpatrick dice que sus CMUT son mucho más eficientes para esta función que los transductores piezoeléctricos.

“Dado que los CMUT son dispositivos mecánicos que convierten ondas sonoras en señales eléctricas a través de la vibración de una placa muy delgada cuando las ondas sonoras inciden en la placa, tienen un coeficiente de acoplamiento muy alto, lo que significa que son capaces de convertir una gran mayoría del incidente. energía del sonido a energía eléctrica ”, dice Fitzpatrick.

Las CMUT son, como sucede, una invención de Stanford, desarrollada por el profesor Butrus Khuri-Yakub a mediados de la década de 1990 . Han madurado rápidamente y empresas como Hitachi y Phillips las utilizan cada vez más para la ecografía médica. Una ventaja de la tecnología es el bajo costo; La producción en masa significa que son posibles conjuntos grandes y altamente sensibles de CMUT, el equivalente a los conjuntos AESA en los radares de aviones modernos .

El equipo examinó enfoques alternativos de detección de sonido desde el aire, incluida la vibrometría láser que usa un láser para detectar vibraciones de sonido en la superficie del agua. Esto resultó ser menos efectivo y, en particular, sufrió la dificultad de distinguir la señal del ruido de fondo. Debido a que los CMUT están sintonizados para resonar a la frecuencia exacta del pulso de sonido del pulso láser, reciben la señal de manera clara y eficiente para eliminar el ruido extraño.


Experimento de imágenes de sonda

En una demostración, el sensor PASS creó una imagen de un objetivo submarino en forma de S (Universidad de Stanford)

El prototipo PASS está optimizado para el mapeo de los fondos marinos de alta resolución, creando un mapa tridimensional detallado. Actualmente, estos estudios deben ser realizados por barcos o submarinos no tripulados, un proceso lento y laborioso. La medición desde el aire podría cubrir áreas mucho más grandes con mayor rapidez.

La primera demostración de PASS se llevó a cabo a una escala modesta, con un objetivo en un contenedor del tamaño de una pecera escaneado por un sonar a solo unos centímetros de la superficie del agua. Pero los desarrolladores no ven problemas particulares al escalarlo al menos al tamaño de un dron que vuela a unas decenas de metros sobre el agua y mira objetos a profundidades de cientos de metros. El sonar PASS podría ser un dispositivo de bajo costo que pesa solo unos pocos kilos, lo que permite equipar una flota de drones que rozan el mar.


Fitzpatrick señala que si el único requisito para el sistema actual fuera la detección (en lugar de la obtención de imágenes), que es lo que proporciona el sonar de inmersión, podrían usar frecuencias acústicas más bajas y operar desde altitudes mucho más altas.

Los investigadores ahora están trabajando en pruebas en entornos más grandes, con el objetivo de poder demostrar PASS en un entorno de aguas abiertas. La investigación está patrocinada por la Oficina de Investigación Naval de los Estados Unidos, pero se necesitará una asociación corporativa para convertir el prototipo de laboratorio en un producto terminado. Dado el potencial de PASS para transformar la guerra antisubmarina, eso podría suceder con bastante rapidez.

Autor: David Hambling

Autor de 'Swarm Troopers: Cómo pequeños drones conquistarán el mundo', siguiendo tecnología militar de vanguardia en general y sistemas no tripulados en particular. Nueva colección de ciencia ficción 'Time Loopers: Four Tales From a Time War' disponible ahora en rústica y Kindle

sábado, 31 de octubre de 2020

UCAV: Programando drones para ataques simultáneos como el de Midway

¿Podemos recrear la "suerte" de la batalla de Midway?

H. Ha || Small Wars Journal




El pasado mes de junio marcó el 72 aniversario de la Batalla de Midway, reconocida como el punto de inflexión en el Pacífico durante la Segunda Guerra Mundial. El 4 de junio de 1942 está dramatizado en libros apropiadamente titulados Miracle at Midway, Incredible Victory y No Right to Win. Porque a las 10.20, la casualidad reunió a tres escuadrones de bombarderos en picado de la Marina de los EE. UU., lanzados en momentos dispares desde diferentes cubiertas, sin oposición sobre cuatro portaaviones japoneses. Esta agregación simultánea en el punto crítico siempre es deseada pero inesperada. En los siguientes cinco minutos, estos cincuenta bombarderos en picado paralizarían a tres portaaviones. A través del resto de ese día, cada lado perdería un portaaviones y el equilibrio de poder en el Pacífico cambió irrevocablemente.

¿Se puede recrear esta “suerte” para generar oportunidades futuras? Si esta "suerte" se puede programar como un algoritmo de Inteligencia Artificial, entonces la aviación no tripulada realmente entrará en la era robótica. Las fuerzas militares basadas en sistemas autónomos no tripulados cambiarán profundamente la forma en que luchamos y equipamos para la guerra y la defensa de Estados Unidos y sus socios. [1] Pero la tecnología por sí sola no será suficiente, debe combinarse con aplicaciones creativas aún imprevistas de esa tecnología. Porque, como escribe Max Boot, “La forma de obtener una ventaja militar, por lo tanto, no es necesariamente ser el primero en producir una nueva herramienta o arma. A menudo se trata de averiguar mejor que nadie cómo utilizar una herramienta o arma ampliamente disponible ”. [2]

 

Batalla de Midway

Cuando se acercaba el amanecer el 4 de junio, la "Fuerza Móvil" japonesa, centrada en cuatro portaaviones, había navegado hacia el sudeste a lo largo de una línea de rumbo 200 millas desde Midway. A las 04.30, esta fuerza de ataque móvil comandada por Nagumo, lanzó 108 aviones en Midway en preparación para el asalto anfibio. No esperaba la acción de los portaaviones estadounidenses. El pensamiento predominante era que los estadounidenses estaban en un respiro y requerirían la captura de Midway para atraer a los portaaviones estadounidenses a un enfrentamiento climático en el mar mahaniano.

Sin que los japoneses lo supieran, los criptoanalistas estadounidenses en Hawai habían descifrado sus códigos y estaban al tanto de sus principales intenciones. Las piezas centrales de Nimitz eran los transportistas Enterprise y Hornet en la Task Force 16 comandada por Spruance y Yorktown en TF17 comandada por Fletcher y en el mando general. Cada grupo de transportistas operaría de forma independiente pero lo suficientemente cerca para el apoyo mutuo. Mientras tanto, Midway recibió apresuradamente marines y activos aéreos adicionales (incluidos los aviones B-26 y B-17 del ejército) para reforzar sus defensas.

Para guiar a las fuerzas estadounidenses, Nimitz promulgó: "Mantener Midway e infligir el máximo daño al enemigo mediante fuertes tácticas de desgaste", pero no aceptar "una acción decisiva ya que probablemente incurriría en grandes pérdidas en nuestros portaaviones y cruceros". Se proporcionó orientación directa en una carta de instrucción, que se "regirá por el principio del riesgo calculado", que definió como "evitar la exposición de su fuerza al ataque de fuerzas enemigas superiores sin una buena perspectiva de infligir, como resultado de tal exposición, mayor daño al enemigo ". Las prioridades de los objetivos se asignaron a portaaviones, acorazados, transportes, cruceros y auxiliares en ese orden. Ambos TF iban a encontrarse al noreste de Midway con la intención de emboscar al enemigo que se dirigía a Midway desde el noroeste. [3]


¿Doctrina en un algoritmo?

La emisión de Nimitz de una clara intención, orientación y prioridades desde su sede en Hawái es bien conocida. Estas órdenes del tipo de mando tipo misión son necesarias para el mando y control eficaz de fuerzas distantes en comunicaciones dispersas para lograr objetivos operativos sin sofocar la iniciativa táctica. Esto tiene similitudes con el diseño de un sistema de inteligencia artificial distribuida donde el estado final del sistema general es una suma de comportamientos de múltiples agentes como se comenta en el resumen de Parunak (comentarios entre paréntesis):

“Las arquitecturas de los agentes necesitan organizarse y adaptarse dinámicamente a circunstancias cambiantes sin el control de arriba hacia abajo de un operador del sistema [Esto describe qué doctrina militar y entrenamiento están diseñados para lograr y qué órdenes de tipo misión-comando logran idealmente]. Algunos investigadores proporcionan esta capacidad con agentes complejos que emulan la inteligencia humana y razonan explícitamente sobre su coordinación, reintroduciendo muchos de los problemas de diseño e implementación de sistemas complejos que motivaron el aumento de la localización de software en primer lugar. Los sistemas naturales de agentes simples (como poblaciones de insectos u otros animales) sugieren que esta retirada no es necesaria [Asimismo, los requisitos complejos de sistemas de armas exquisitos pueden no ser necesarios]. Este artículo resume varios estudios de tales sistemas, y deriva de ellos un conjunto de principios generales que los sistemas artificiales de múltiples agentes pueden utilizar para respaldar el comportamiento general del sistema significativamente más complejo que el comportamiento de los agentes individuales [Asimismo, una campaña es una serie de batallas individuales diseñadas para lograr objetivos operativos] ”. [4]


El vuelo del Hornet hacia ninguna parte

A medida que el paquete de ataque de Nagumo estaba en camino, los estadounidenses estaban tratando de localizar a la presa insospechada principalmente utilizando aviones de reconocimiento anfibios de PBY Catalina, basados ​​en Midway. En 0552, un PBY informó la ubicación de Nagumo, "Dos portaaviones y acorazados con una distancia de 320, 180, rumbo 135, velocidad 25" desde Midway. Atacar rápidamente fue fundamental, por lo que se le ordenó a Spruance que "avanzara hacia el suroeste y atacara a los portaaviones enemigos tan pronto como se encontraran definitivamente". En cuanto a Fletcher, Yorktown (CV-3) pronto tuvo que recuperar sus bombarderos en picada de exploración. Mientras tanto, Spruance acortó la distancia a la posición japonesa informada a 175 millas al suroeste y estableció las 0700 como hora de lanzamiento del TF-16. [5]

Sin embargo, no había ningún plan para coordinarse entre Enterprise (CV-6) y Hornet (CV-8) dentro de TF-16. A diferencia de la doctrina japonesa, la doctrina estadounidense hacía que cada ala aérea de portaaviones operara individualmente, y cada portaaviones tenía sus propios métodos para "detectar" aviones en cubierta para su lanzamiento. A diferencia de los portaaviones modernos con cubiertas en ángulo y amplias superficies planas para realizar operaciones de lanzamiento y recuperación simultáneamente, los portaaviones de la Segunda Guerra Mundial se limitaron a una operación debido a una pista. Ya sea en la cubierta desde los colgadores debajo de la cubierta hasta la sección de popa de la cubierta plana en preparación, lanzamiento o recuperación. Enterprise eligió detectar sus cazas Combat Air Patrol (CAP) y SBD (bombarderos en picado) de mayor alcance primero en cubierta para el lanzamiento grupal. Posteriormente, los cazas de escolta y los TBD (torpederos-bombarderos) se elevaron desde la plataforma de suspensión para ubicarlos y lanzarlos para unirse a los bombarderos en picado que flotaban por encima. La intención era un paquete de ataque equilibrado que viajaba como una armada aérea: SBD a gran altitud, TBD a baja altitud y cazas que protegían a ambos del CAP enemigo. Después del lanzamiento del primer anuncio de Enterprise, los problemas retrasaron la detección del segundo grupo. Durante este retraso, a las 07.40 una transmisión japonesa interceptada que revelaba la posición de TF16 agregó urgencia para resolver el problema, ya que el elemento sorpresa estaba menguando. Por lo tanto, Spruance ordenó a los bombarderos en picado Enterprise aerotransportados que procedieran a la misión de forma independiente sin su escolta de cazas o torpederos. Como tal, LCDR McClusky, comandante del grupo aéreo de CV-6, dirigió treinta y tres bombarderos en picado de Scouting Six (VS-6) y Bombing Six (VB-6) hacia el suroeste subiendo a 19,000 pies. Así que al principio, El ataque de la Enterprise se fragmentó en dos grupos y se fragmentó aún más más tarde cuando VF-6 no pudo encontrar al VT-6 a quien se suponía que debían escoltar.
[6]

Hornet completó el lanzamiento en 0755 con alguna variación en el orden de detección, pero inexplicablemente el comandante del grupo aéreo, LCDR Stanhope Ring, avanzó en un rumbo casi al oeste (265) en lugar de 240 hacia la esperada pista japonesa hacia Midway. Poco después del despegue, LCDR Waldron, en violación directa de las protestas de Ring, se desvió a 240 con todo su escuadrón VT hacia el enemigo.
[7]

El lanzamiento de Yorktown fue bien ejecutado y en alto por 0906 para lo que se convirtió en el único paquete de ataque coordinado enviado al objetivo. Yorktown era un veterano de la reciente batalla del Mar de Coral en la primera batalla de portaaviones contra portaaviones, pero las lecciones aprendidas aún no se difundieron a la flota. Fletcher mantuvo su escuadrón de exploración a bordo como reserva. Aunque se lanzó de manera cohesiva, cerca del contacto con el enemigo, este paquete también se fragmentó en dos grupos: TBD con dos cazas de escolta y SBD con cuatro cazas de escolta.

Los tres portaaviones estadounidenses lanzaron 151 aviones en momentos dispares hacia la dirección general del enemigo con poca coordinación para llegar al enemigo simultáneamente. Este enjambre de aire se descentralizó en siete pulsos, pero la "suerte" secuenciaría sus ataques y se reagruparía simultáneamente para lograr un efecto crítico. ¿Podemos codificar esto?

 

Simplicidad en la inteligencia artificial distribuida

A veces, los problemas más complicados requieren las soluciones más simples. Tal fue el caso del problema "depredador-presa" en el campo de la inteligencia artificial distribuida que molestó a los investigadores durante años. En una cacería de alces, un solo lobo no puede igualar a un alce poderoso, pero una manada de lobos puede rodear al alce para que uno pueda asestar un golpe mortal cuando el alce se distrae con la manada. Muchas de las soluciones propuestas asumían capacidades de razonamiento y comunicación que no eran orgánicas para los lobos, similares a los humanos que usan radios para un ataque coordinado. Una solución más simple propuesta por Korf en 1992 requiere solo una detección y acción rudimentarias por parte de los alces y los lobos:

  1. Alces: muévete a la celda vecina que esté más alejada del lobo más cercano.
  2. Lobos: muévete a la celda vecina con la puntuación más alta determinada por,
  3. S = d (alce) - k * d (lobo)


Donde d (alce) es la distancia al alce, d (lobo) es la distancia al otro lobo más cercano y k es una constante de afinación que modela una fuerza repulsiva entre lobos. Parunak explica: “Cada individuo en el sistema lobo-alce influye y es influenciado por todo el sistema. El comportamiento del sistema general depende fundamentalmente de las velocidades relativas de los alces y los lobos (ya que un alce rápido siempre puede escapar de una manada de lobos lentos) y del valor del parámetro k que establece la repulsión entre los lobos. Cuando la repulsión y la atracción están adecuadamente equilibradas, los lobos rodean inevitablemente al alce, sin ninguna comunicación explícita o negociación de estrategias ”. [8]

Con respecto al vuelo de Ring a ninguna parte, aunque sin sentido, si los "pulsos" separados se consideran agentes múltiples (lobos) en un sistema de inteligencia artificial distribuida, entonces tienen sentido. El factor de repulsión (k) entre estos "lobos" los dispersó individualmente mientras colectivamente intentaban rodear a Nagumo.

Leones de sacrificio

El avión torpedo estadounidense en ese momento era el TBD-1 Devastator que arrastraba un torpedo de 2000 libras externamente. Fue el primer monoplano portador totalmente metálico de la Marina, pero en 1942 estaba obsoleto. El perfil de ataque proscrito era volar a 80 nudos, 100 pies de altitud en rumbo constante hasta 1000 yardas de un barco. Esta era una posición vulnerable y la doctrina era atacar con SDB de gran altitud para dividir los esfuerzos de los combatientes enemigos presentes y con los combatientes de escolta para proteger ambas unidades en un paquete de ataque combinado. Los escuadrones TBD que atacan solos serían suicidas. Pero eso es exactamente lo que les sucedió a tres escuadrones de torpedos del Escuadrón Torpedo Ocho (VT-8) de Hornet (CV-8) y VT-6 y VT-3 de Enterprise y Yorktown respetuosamente. De los 51 aviones torpedo que atacaron en forma cadenciada, ¡solo 7 regresaron! Los jóvenes pilotos de Devastator entendieron las probabilidades a las que se enfrentaban, pero presionaron en sus carreras de ataque sin afectar el daño esperado. 

La percepción común de estos actos de valor es que los Devastadores de vuelo bajo llevaron a todos los cazas japoneses a baja altitud para diezmar los torpederos-bombarderos de vuelo lento. Posteriormente, esto dejó a los tres escuadrones de SDB de gran altitud desapercibidos y sin obstáculos para llevar a cabo sus golpes casi verticales de muerte. En palabras de un veterano de Midway, “Hay que recordar que los japoneses fueron sometidos a no menos de cinco ataques de torpedos separados [B-26 y TBF de Midway, luego los tres escuadrones de VT] durante un período de solo dos horas aproximadamente. , y los últimos tres llegaron en la última hora. A pesar de su intenso entrenamiento y experiencia en combate, los repetidos ataques a baja altura hicieron que los pilotos Zero se acostumbraran a la necesidad de luchar a baja altura. Para cuando aparecieron VT-6 y VT-3, tenían que esperarlo. No se sintieron decepcionados. VT-3 pagó un precio terrible por ser el cebo final, pero lo consiguieron. Los Zeros estaban abajo con ellos, no arriba con los SBD de McClusky y Leslie ". [9]

Aunque es cierto, Parshall presenta un análisis pasado por alto de que los ataques de escuadrones de torpedos en serie impidieron que los japoneses lanzaran su contraataque en los EE. UU. detecta su propio paquete de ataque sobre la posición estadounidense conocida: (tiempos aproximados) 0920 ataques VT-8, 0940 ataques VT-6 y 1010 ataques VT-3. O Nagumo estaba lanzando y recuperando cazas para reponer su CAP, o maniobrando radicalmente sus portaaviones para evadir al enemigo entrante. Detectar en cubierta una fuerza de ataque japonesa lleva nominalmente 45 minutos para llevar a la superficie, calentar y lanzar; los portaaviones japoneses como sistema no tuvieron respiro. Por muy suicidas que parecieran los ataques de los torpederos-bombarderos estadounidenses, trastornaron la voluntad del enemigo.


Algunos teóricos comparan la Fuerza con la Capacidad multiplicada por la Voluntad. La tecnología moderna puede habilitar drones autónomos donde Will puede ser absoluto. Los drones de bajo costo son prescindibles y pueden usarse para distraer y perturbar al enemigo, más aún si se usan con sacrificio. Actualmente existe autonomía para tareas sencillas y limitadas como aterrizar en un portaaviones o volar puntos de referencia designados, pero se puede lograr mucho más.

Una cartera de UAV debe alinearse con dos conceptos operativos prometedores, Air-Sea Battle (ASB) y Naval Integrated Fire Control-Counter Air (NIFC-CA). El enfoque operativo de ASB para los desafíos A2 / AD es una fuerza integrada en red capaz de atacar en profundidad para interrumpir, destruir y derrotar a las fuerzas adversarias (NIA / D3). Todos estos términos se explican por sí mismos, a excepción de Ataque en profundidad, que un representante de la oficina de ASB describe como: “incendios ofensivos y defensivos e incluye medios tanto cinéticos como no cinéticos para atacar las vulnerabilidades críticas de un adversario sin requerir la destrucción sistemática del las defensas del enemigo. Esta es una desviación significativa de la metodología de reversión actual que se basa en comunicaciones indiscutidas y la capacidad de establecer la superioridad aérea o el dominio en cualquier otro dominio. La metodología de ataque en profundidad busca crear y explotar corredores y ventanas de control que sean de naturaleza temporal y limitados geográficamente ”. [10]

El boogie-man militar conocido como A2 / AD no es nada nuevo en la historia militar. Un ejemplo es la Primera Guerra Mundial después de que las maniobras de barrido iniciales se convirtieran en líneas estáticas con intrincados sistemas de trincheras, campos de tiro de ametralladoras entrelazados, alambre de púas e incesante artillería de largo alcance. Tal era la situación en marzo de 1918 cuando los alemanes comenzaron su ofensiva de primavera, pero esta vez, se codificaron nuevas tácticas en un manual alemán The Attack in Position Warfare. Un capitán bávaro había consolidado el nuevo concepto del ejército de avance rápido y desprecio por la seguridad de los flancos. Los ataques fueron dirigidos por tropas de asalto especializadas para causar envolvimiento e interrupción. Las ofensivas alemanas de marzo a julio de 1918 vieron las mayores ganancias territoriales desde que se produjo la guerra de trincheras años antes. [11]

NIFC-CA proporcionará control y proyección de fuego de largo alcance, permitirá una conciencia situacional coordinada y cooperativa en un espacio de batalla en disputa. Al compartir una imagen operativa común y soluciones de objetivos entre plataformas, se crea un sistema de apoyo de fuego indirecto. Por lo tanto, una plataforma de sensores (observador adelantado) puede solicitar armas guiadas de precisión de largo alcance desde plataformas distantes (tirador) para disparos coordinados masivos.

Volviendo al sistema Wolves-Moose, se utiliza un algoritmo para rodear al alce. Asimismo, se pueden utilizar vehículos aéreos no tripulados autónomos para rodear el objetivo a un alcance efectivo de misiles para incendios masivos: los lobos rodean inevitablemente a los alces, sin ninguna comunicación explícita o negociación de estrategias. Esto es lo que sucedió el 4 de junio a las 10.20, pero por casualidad, cuando los tres escuadrones de bombarderos en picado de McClusky y Leslie aparecieron sobre el enemigo al mismo tiempo desde diferentes vectores.

 

Cartera propuesta de UAV

Bombardero de ataque de largo alcance (LRS-B): las municiones de largo alcance guiadas con precisión podrían estar "de guardia" para apoyo de fuego o asignadas misiones profundas después de que los escaramuzadores hayan interrumpido o engañado las defensas.

UCAV: similar a la promesa del X-47D, ataque sigiloso de banda ancha completo con gran resistencia para penetrar las defensas A2 / AD como escaramuza. Sus cargas de armas internas moderadas pueden matar objetivos de oportunidad o usar NIFC-CA para convocar ataques desde LRS-B.

UCLASS: drones más baratos y poco observables con cargas útiles ISR de intercambio modular y armamento en puntos duros externos. Un disruptor prescindible.

QF-16: el dron "Boyd". Boeing está trabajando para convertir los F-16 en vehículos no tripulados dirigidos a drones. Se pueden convertir cientos de F-16 retirados en "cementerio". [12] Boyd ayudó a diseñar el caza de corto alcance altamente maniobrable y se pueden usar para entrar en la construcción del bucle Observar-Orientar-Decidir-Actuar del enemigo. Se pueden ejecutar movimientos preprogramados basados ​​en la disposición del enemigo detectado. Los UAV pueden maldecir a través de maniobras de fuerza de alta G que un piloto humano no podría sostener fisiológicamente para colocar al avión enemigo fuera de posición a la fama de Boyd de “40 segundos”.

La estrategia de adquisición para esta cartera debe comenzar con la pieza de inteligencia artificial (IA) como su propio programa separado. Las plataformas individuales tendrán sus propios sistemas de control específicos, pero la arquitectura abierta y las interfaces abiertas permitirán futuras inserciones técnicas de IA para el empleo operativo después del desarrollo de la plataforma. A corto plazo, debería comenzar el desarrollo de UCAV y QF-16. El QF-16 está casi a plena capacidad y bajo una regulación relajada de exportación de UAV, QF-16 puede reforzar inmediatamente a nuestros socios a través de los programas de financiación de seguridad FMS o Sección 1206 que contrarrestan el programa UCAV de China.

El UCAV se desarrolla temprano, porque las lecciones aprendidas pueden incorporarse a LRS-B. Además, se necesita una plataforma no tripulada orientada al combate, frente a la dominada por ISR, para obtener lecciones de operaciones de ataque integradas similares a las mejores prácticas de aviación basadas en portaaviones de Yorktown en la Batalla del Mar de Coral que conduce a Midway. Un UAV dominado por ISR marginado para volar misiones ISR de medianoche no forzará las transformaciones culturales y técnicas necesarias. Debería considerarse la posibilidad de realizar esfuerzos de adquisición combinados con el propio programa UCAV del Reino Unido, Taranis.

Con este fin, los seis UAV planeados por destacamento de portaaviones deben ser un programa de Categoría de Adquisición Nivel II-D, con un contrato de varios años que desarrolle seis UCAV anualmente durante cinco años. Dos dets para portaaviones desplegados, dos dets para períodos integrados de calificación de portaaviones tripulados y no tripulados y listos en 30 días para operaciones de combate importantes, y un det para entrenamiento y experimentación INCONUS.

A mediano plazo, el LRS-B comenzará a desarrollarse, ya que la IA estará a punto de completarse y estará lista para la inserción técnica en las estructuras de los aviones UCAV. A largo plazo es el desarrollo de UCLASS como nuestro inventario actual de cientos de drones con capacidad armada cerca del final de su vida útil. En este momento, los avances en la fabricación aditiva pueden permitir la impresión improvisada de miles de marcos de UAV baratos para ensamblar con fuentes de energía de mayor densidad y cargas útiles ISR.

 

Acto final de valor

John Keegan escribe que “la naturaleza defendía la huida, la cobardía, el interés propio; la naturaleza hizo para el cosaco, por el cual un hombre luchaba si quería y no de otra manera, y podía recurrir al comercio en el campo de batalla si eso le convenía a sus fines; esto era una "guerra real" en su peor momento. Sin embargo, los ideales mejor observados de la cultura del regimiento (obediencia total, valor resuelto, autosacrificio, honor) casi se acercaron a esa 'guerra verdadera' que Clausewitz se convenció a sí mismo de que un soldado profesional debería poner fin ". A medida que la guerra se aproximaba más a la "guerra verdadera", mejor atendía las necesidades políticas de un estado. [13]

De hecho, las tripulaciones de tres escuadrones de Devastator emulaban las virtudes de la verdadera guerra según la definición de Clausewitz. Pero la "verdadera guerra" es insoportable. Mientras que la psique de un guerrero humano no puede caminar por la delgada línea entre la guerra real y la verdadera debido a sus valores incompatibles, los sistemas no tripulados pueden mantener la "guerra verdadera" tal como está escrita en su código e imitar la "guerra real" en situaciones restringidas cuando son ventajosas.

En el futuro, un joven ciberguerrero encargado por órdenes de mando tipo misión e informado por la doctrina generará la aplicación para la era robótica, una “aplicación” para implementar conceptos operativos según lo dicte la situación. [14] Esta adaptabilidad táctica está justificada porque (en términos pugilísticos) los recursos aplicados en tres ataques equilibrados en combinaciones recurrentes de 'jab, derecha-cruz', pueden tener más eficacia si se reestructuran en 'jab, jab, jab, gancho derecho, gancho izquierdo. gancho de moda. En Midway, esto ocurrió por casualidad, aunque fue posible gracias al entrenamiento, la tenacidad y la valentía. La panacea será la inteligencia artificial, que captura el valor en un algoritmo, y las oportunidades que brindará un genio de este tipo en un enfoque bélico de armas combinadas. Tal valor como lo demostraron tres escuadrones de torpedos y los 99 de los 128 miembros de la tripulación que llevaron el máximo sacrificio por su país. 


Notas finales


[1] Buen manual que aborda la próxima revolución técnico-militar, sus oportunidades y desafíos. Robert O. Work and Shawn Brimley, 20YY Preparing for War in the Robotic Age (Center for a New America Security, Jan 2014).

[2] Max Boot, War Made New (NY: Gotham Books 2006) p.459.

[3] Robert J. Cressman et al., A Glorious Page in our History (Missoula, MT: Pictorial Histories Publishing 1990) p.39.

[4] H.V.D. Parunak, “Go to the Ant: Engineering Principles from Natural Multi-Agent Systems,” Annals of Operations Research, 75:69-101, 1997.

[5] Jon Parshall and Tony Tully, Shattered Sword: The Untold Story of the Battle of Midway (DC: Potomac Books 2007) p.134-135.

[6] Jon Parshall and Tony Tully, Shattered Sword: The Untold Story of the Battle of Midway (DC: Potomac Books 2007) p.172-173.

[7] Hasta el día de hoy, la cuestión de si Ring partió el 265 o el 240 se debate con indicios de encubrimientos. Alvin Kernan, The Unknown Battle of Midway (New Haven: Yale University 2005) p.128-136. Ronald W. Russell, No Right to Win (NY: iUniverse 2006) p.127-146.

[8] H.V.D. Parunak, “Go to the Ant: Engineering Principles from Natural Multi-Agent Systems,” Annals of Operations Research, 75:69-101, 1997.

[9] Ronald W. Russell, No Right to Win (NY: iUniverse Inc 2006) p. 195.

[10] CDR John Callaway, “The Operational Art of Air-Sea Battle,” Center for International Maritime Security, http://cimsec.org/operational-art-air-sea-battle/11913

[11] John Keegan, The First World War (NY: Alfred A. Knopf 1998) p.394-410.

[12] Matthew Bell, “Boeing touts operational QF-16 UAV,” HIS Jane’s Defense Weekly, 07 May 2014, http://www.janes.com/article/37617/boeing-touts-operational-qf-16-uav?from_rss=1

[13] John Keegan, A History of Warfare (NY: Vintage Books 1993) p.16-22.

[14] LT Robert Bebber, “Developing a Strategic Cadre in the Information Dominance Corps”, Center for International Maritime Security, 29August 2014 (http://cimsec.org/developing-strategic-cadre-information-dominance-corps/12742).