Mostrando las entradas con la etiqueta ECM. Mostrar todas las entradas
Mostrando las entradas con la etiqueta ECM. Mostrar todas las entradas

domingo, 25 de agosto de 2024

Ataque aéreo: El implacable resultado de un ataque simultáneo multidireccional

Ataque simultáneo multidireccional


Por Esteban McLaren para FDRA




1. Introducción

Un ataque multifrontal simultáneo es atacar un blanco desde distintas direcciones al mismo tiempo. Es un elemento costoso de conseguir porque exige muchos recursos dado que la fuerza de ataque debe cubrir al menos dos frentes o direcciones y, más difícil aún, debe ser coordinado, es decir todo el movimiento debe hacerse al mismo tiempo. ¿Qué dificultades enfrenta el defensor? La saturación. Defiende un frente y, por costo de oportunidad, desatiende el otro y viceversa. La historia presenta un caso apasionante.

La Batalla de Midway fue un punto de inflexión crucial en la Segunda Guerra Mundial, donde un ataque simultáneo no intencionado de las fuerzas aeronavales estadounidenses desempeñó un papel decisivo. Durante la batalla, los aviones estadounidenses lanzaron ataques secuenciales desde una misma dirección a la vez. Los comandantes de portaaviones llegaron a esquivar la mayoría de estos ataques (¡un capitán lo hizo más de 70 veces en ese fatídico día!), torpedos y bombas caían por las bordas de estos enormes buques pero ni hacían mella en ellos. Sin embargo, una partida de ataque dirigida por el comandante McClusky perdió su rumbo y al volver para re-encausar el ataque lo realizó desde un inesperado Suroeste, coincidiendo con otra partida de ataque dirigida por el teniente Leslie provenía de Noreste al mismo tiempo, sorprendiendo por completo a la flota japonesa. Este ataque simultáneo desde dos flancos diferentes, llevado a cabo principalmente por bombarderos en picado SBD Dauntless, resultó en la destrucción casi inmediata de tres portaaviones japoneses empezando por el Kaga, lo que cambió el curso de la guerra en el Pacífico.

Las consecuencias de este ataque fueron devastadoras para la Armada Imperial Japonesa. La pérdida de cuatro portaaviones, junto con pilotos experimentados y aviones, debilitó gravemente su capacidad operativa. Esta victoria permitió a los Estados Unidos pasar de una posición defensiva a una ofensiva en el teatro del Pacífico, alterando el equilibrio de poder y marcando el inicio del declive de la supremacía naval japonesa.

2. La Batalla de Midway

La Batalla de Midway, ocurrida del 4 al 7 de junio de 1942, es una de las confrontaciones más importantes de la Segunda Guerra Mundial en el Teatro del Pacífico, marcando un punto de inflexión en la guerra. Durante esta batalla, un evento crucial fue el ataque simultáneo de dos formaciones de aviones estadounidenses desde diferentes direcciones, lo que resultó en la devastadora destrucción de los portaaviones japoneses.


2.1 Contexto previo

El 4 de junio de 1942, las fuerzas japonesas, bajo el mando del almirante Isoroku Yamamoto, lanzaron un ataque contra Midway con la esperanza de eliminar la amenaza de los portaaviones estadounidenses y asegurar el dominio en el Pacífico. Los japoneses confiaban en la sorpresa y la superioridad numérica. Sin embargo, gracias a la ruptura del código japonés por parte de la inteligencia estadounidense, los norteamericanos sabían de antemano los planes japoneses y prepararon una emboscada.


2.2 Ataques iniciales y esquiva de los japoneses

En la mañana del 4 de junio, los aviones estadounidenses lanzaron una serie de ataques aéreos desde sus portaaviones USS Enterprise, USS Hornet, y USS Yorktown contra la flota japonesa. Estos ataques iniciales consistieron en oleadas de aviones torpederos (principalmente TBD Devastators) y bombarderos en picado (SBD Dauntless). Los aviones torpederos atacaron primero, pero fueron diezmados por los cazas japoneses y el fuego antiaéreo; casi todos los aviones torpederos fueron derribados, y no lograron impactar a los portaaviones japoneses.

Durante estos primeros ataques, los comandantes de los portaaviones japoneses, como el vicealmirante Chuichi Nagumo, realizaron maniobras evasivas efectivas, logrando evitar los torpedos lanzados por los aviones estadounidenses. La combinación de maniobras hábiles, la protección de cazas Zero, y la falta de coordinación entre las diferentes oleadas de ataque permitieron a la flota japonesa esquivar la destrucción.


2.3 El ataque simultáneo decisivo

Sin embargo, mientras los aviones torpederos estadounidenses mantenían ocupadas a las defensas japonesas volando bajo y atrayendo a los cazas Zeros hacia niveles bajos, una fuerza de bombarderos en picado SBD Dauntless de los portaaviones USS Enterprise y USS Yorktown llegó a la escena desde una dirección diferente y en altitud. Liderados por los comandantes de escuadrón como el Teniente Comandante Wade McClusky y el Capitán de Corbeta Max Leslie, estos aviones aprovecharon que los cazas japoneses estaban ocupados a baja altura y que las maniobras evasivas japonesas habían dejado a los portaaviones en posiciones vulnerables.

En un giro del destino, los bombarderos en picado atacaron simultáneamente desde dos direcciones distintas: desde el noroeste y el sudoeste, tomando por sorpresa a los japoneses. Son las líneas de ataque 1 y 2 convergiendo a los blancos mientras sorpresivamente aparece una enorme ala de ataque 3 desde el suroeste, como se ilustra debajo. No deje de ver los dos videos añadidos para terminar de comprender el panorama de esta fantástica batalla aeronaval. Los portaaviones Akagi, Kaga, y Soryu fueron impactados casi simultáneamente en cuestión de minutos. Es que al querer esquivar los torpedos y bombas lanzadas por el grupo aéreo desde el Noreste, como lo habían hecho toda la mañana, quedaban alineados para los ataques provenientes desde el Suroeste. No había escapatoria. Las bombas penetraron en los hangares de los portaaviones, donde los aviones japoneses estaban siendo rearmados y repostados, lo que resultó en explosiones masivas que causaron incendios incontrolables. Este ataque decisivo resultó en la destrucción de tres portaaviones japoneses en rápida sucesión.


Más tarde, ese mismo día, un cuarto portaaviones japonés, el Hiryu, lanzó un contraataque que logró dañar severamente al USS Yorktown, pero fue finalmente localizado y destruido por aviones estadounidenses. Fue el fin de la Kidō Butai, la aviación naval imperial japonesa.



2.4 Consecuencias

La pérdida de los cuatro portaaviones japoneses en Midway fue un golpe devastador para la Armada Imperial Japonesa, ya que no solo perdió buques clave, sino también pilotos experimentados y aviones. La batalla cambió el equilibrio de poder en el Pacífico, permitiendo a los Estados Unidos pasar a la ofensiva en el teatro de operaciones.

El ataque simultáneo desde diferentes direcciones durante la Batalla de Midway se considera uno de los momentos más decisivos de la Segunda Guerra Mundial, demostrando la importancia de la coordinación y la sorpresa en el combate aéreo-naval. De todos modos, debe recalcarse que esta simultaneidad fue azarosa: el grupo que atacaba desde el Sudoeste simplemente se había perdido y volvía sobre sus pasos.




3. Pesadilla en el mar

Imaginen una operación naval a mar abierto. En dicha locación existe un alto potencial de ataques aéreos con bombas (tontas o LGB) o misiles antibuque (AShM) enemigos. Sin embargo, el infierno de Midway podría emerger personalizado en nuevos misiles AShM o misiles de crucero. Las nuevas amenazas, gracias a la digitalización, pueden hasta incluir diseño de guiado con inteligencia artificial. Por lo tanto, ni siquiera un humano estaría implicado en su gestión. 

Un capitán de un buque capital moderno (como un destructor, crucero o portaaviones) enfrentado a un ataque simultáneo de múltiples de AShM desde diferentes direcciones tendría a su disposición una combinación de capacidades de defensa avanzada, obviamente imposibles de obtener en el contexto tecnológico de la Segunda Guerra Mundial. Estas capacidades están diseñadas para detectar, rastrear y neutralizar las amenazas antes de que impacten en el buque. Adentrémonos en ellas.

3.1. Detección y seguimiento

  • Radar de vigilancia de largo alcance: Un radar como el AN/SPY-1 (utilizado en el sistema Aegis) o el más moderno AN/SPY-6, proporciona una cobertura de 360 grados, permitiendo la detección y seguimiento simultáneo de múltiples amenazas desde diferentes direcciones.
  • Sistemas de sensores electro-ópticos e infrarrojos (EO/IR): Estos sistemas complementan al radar al proporcionar capacidades de detección pasiva, cruciales para identificar misiles furtivos o para operar en entornos de alta interferencia electrónica.

3.2. Contramedidas electrónicas (ECM)

  • Jammers y perturbadores electrónicos: El buque puede emplear sistemas de guerra electrónica para intentar desviar o desorientar los misiles entrantes. Esto podría incluir la emisión de señales de interferencia (jamming) para interrumpir los sistemas de guía de los misiles o el uso de señuelos electrónicos que crean falsos blancos para confundir los sistemas de radar del AShM.

3.3. Defensa antimisil de capa externa

  • Misiles antiaéreos de largo alcance: Misiles como el SM-6 (Standard Missile 6) en un sistema Aegis pueden ser lanzados para interceptar los misiles antibuque a larga distancia. Estos misiles tienen la capacidad de maniobrar a gran velocidad y de interceptar misiles entrantes incluso a altas velocidades (como los misiles supersónicos o hipersónicos).
  • Sistemas integrados de defensa en red: En un grupo de combate, como un grupo de ataque de portaaviones (CSG), otros buques también pueden contribuir a la defensa, lanzando misiles interceptores desde diferentes posiciones para aumentar la probabilidad de interceptación.


3.4. Defensa de capa media

  • Misiles de defensa de punto o corta distancia: Misiles como el RIM-162 ESSM (Evolved Sea Sparrow Missile) se encargan de la defensa en un rango medio, interceptando misiles que logran penetrar las defensas de largo alcance.
  • Cañones CIWS (Close-In Weapon Systems): Sistemas como el Phalanx CIWS o el Goalkeeper, que son cañones de alta cadencia de disparo, proporcionan la última línea de defensa, disparando ráfagas rápidas de proyectiles para destruir misiles entrantes a muy corta distancia.

3.5. Contramedidas activas

  • Señuelos lanzables (chaff y flare): El buque puede lanzar señuelos físicos como chaff (que dispersa tiras de metal para confundir el radar del misil) y flares (que emiten calor para desviar misiles guiados por infrarrojos).
  • Decoys Remolcados: Dispositivos como el Nulka, un señuelo activo lanzado que imita la firma radar del buque, pueden ser desplegados para atraer misiles lejos del barco real.

3.6. Maniobras evasivas:

  • Maniobras de alta velocidad: Aunque limitado por las capacidades físicas del buque, el capitán podría ordenar maniobras evasivas para intentar evitar que los misiles logren un impacto directo, especialmente en caso de que los misiles se acerquen desde diferentes ángulos.

3.7. Coordinación con la flota:

  • Defensa coordinada de grupo de combate: En un escenario de combate real, el buque capital estaría operando como parte de un grupo de combate, con otros buques y aeronaves de apoyo que proporcionarían una capa adicional de defensa. Por ejemplo, destructores o fragatas pueden actuar como piquetes de radar para interceptar misiles antes de que lleguen al buque capital.
Estas condiciones no están ampliamente difundidas entre todas las armadas del Mundo. Estos equipos se encuentran disponibles son en las armadas más modernas, incluso sólo en el US Navy, la cual es la mayor armada del Mundo. Es decir, un combatiente de superficie promedio en el Mundo quedaría sin poder emplear alguna de esas "capas" siendo altamente probable un impacto de un AShM sobre su estructura sin que mucho se pueda hacer.

3.8 Resumen

El capitán de un buque capital moderno tiene a su disposición una serie de capas de defensa que, cuando se utilizan de manera conjunta y efectiva, ofrecen una protección robusta contra ataques coordinados de misiles antibuque desde múltiples direcciones. La clave del éxito reside en la detección temprana, la rápida decisión para desplegar contramedidas, y la capacidad de coordinar todas estas defensas en un entorno de combate de alta intensidad. A pesar de las avanzadas defensas, un ataque masivo y bien coordinado de múltiples AShM sigue siendo una amenaza seria, subrayando la importancia de la redundancia y la preparación en la guerra moderna.



¿Cómo repeler un ataque multidireccional simultáneo? La mayoría de las veces, no puedes.

Perfiles de ataque del AShM Penguin y misil de crucero Tomahawks

Nótense la posibilidad de realizar curvas y explorar blancos para detectar y optimizar el perfil de ataque.






4. Algoritmos de ataque simultáneo

Sin embargo, la misma digitalización puede llegar a elementos de defensa mucho más pequeños, para blanco muy puntuales, en escalas también precisamente definidas. Existen sistemas avanzados de dirección de misiles y drones diseñados para coordinar ataques desde múltiples direcciones de manera simultánea, lo que incrementa las posibilidades de éxito en la misión. Este tipo de ataques coordinados se emplea especialmente en operaciones contra objetivos fuertemente defendidos, donde el objetivo es saturar o superar las defensas enemigas.

4.1 Ejemplos de tales sistemas

  1. Sistemas de enjambre (swarming):

    • Los drones pueden operar en enjambres, donde múltiples unidades trabajan de manera coordinada para atacar desde diferentes direcciones. Cada dron puede ser autónomo o controlado en red, compartiendo información en tiempo real para ajustar su ataque. El enjambre puede saturar las defensas enemigas al atacar simultáneamente desde varios ángulos. Uno puede recordar en una escena de Matrix Revolutions donde una evento así se observa. Y es sobrecogedor, por cierto.
  2. Misiles de ataque coordinado:

    • Misiles como el Tomahawk Block IV o el AGM-158 JASSM tienen capacidades avanzadas de navegación y control que les permiten realizar ataques coordinados. Estos misiles pueden ser programados para seguir diferentes trayectorias y llegar al objetivo desde varias direcciones al mismo tiempo, lo que complica la defensa.



  3. Ataques de saturación:

    • En este tipo de ataque, múltiples misiles son lanzados en un patrón diseñado para saturar las defensas enemigas. Los misiles pueden ser programados para atacar desde diferentes ángulos, alturas y velocidades, creando una situación en la que es difícil para los sistemas de defensa aérea interceptar todos los misiles entrantes.
  4. Guerra de enjambre con drones de ataque:

    • En contextos modernos, los drones kamikaze o loitering munitions (municiones merodeadoras) como el Harop o el Switchblade pueden ser desplegados en masa. Estos drones pueden ser programados para atacar simultáneamente desde múltiples direcciones, lo que aumenta la probabilidad de que al menos uno logre alcanzar el objetivo.

 




Google trabaja con drones con inteligencia artificial que permitan discernir blancos y decidir ataques


Una discusión muy técnica de cómo se pueden programar enjambres de drones y coordinarlos para ataques y otras misiones

4.2 Principio operativo

La coordinación, sincronización y redundancia al ataque se combinan para forzar casi a un resultado implacable final: el blanco será alcanzado y destruido.

  • Coordinación y sincronización: Estos sistemas dependen en gran medida de una coordinación y sincronización precisa, generalmente mediante comunicaciones avanzadas y sistemas de navegación como GPS, INS (Sistema de Navegación Inercial), o incluso tecnologías emergentes como la inteligencia artificial.
  • Redundancia de ataque: Al atacar desde diferentes ángulos y direcciones, se reduce la probabilidad de que un solo sistema de defensa sea capaz de neutralizar todas las amenazas entrantes, asegurando así que al menos uno de los misiles o drones alcance el objetivo.

Estos enfoques son fundamentales en la guerra moderna, especialmente contra adversarios que cuentan con sistemas de defensa aérea avanzados.

5. Conclusión

La capacidad para ejecutar ataques multidireccionales simultáneos, ya sea con misiles antibuque, misiles de ataque a blancos terrestres o drones, representa un avance crucial en la guerra moderna. Esta estrategia se basa en la coordinación de múltiples dispositivos de ataque que convergen sobre un mismo objetivo desde diferentes direcciones al mismo tiempo. Su importancia radica en su capacidad para desbordar las defensas enemigas, minimizar la posibilidad de interceptación y maximizar el impacto del ataque. La importancia en el campo de batalla moderno puede enumerarse así:

  1. Saturación de defensas: Un ataque desde múltiples direcciones complica significativamente la tarea de las defensas aéreas o antimisiles del adversario. Las defensas tradicionales están diseñadas para interceptar amenazas que provienen de una o pocas direcciones al mismo tiempo. Al enfrentarse a un ataque multidireccional, los sistemas defensivos pueden ser saturados, haciendo que algunas de las armas logren penetrar y alcanzar sus objetivos.

  2. Reducción de la efectividad de los contramedidas: Las contramedidas electrónicas y de defensa activa, como sistemas de interferencia o misiles interceptores, son menos eficaces cuando deben lidiar con múltiples vectores de ataque simultáneos. Esta multiplicidad obliga al enemigo a dividir sus recursos, aumentando las posibilidades de que uno o más de los vectores de ataque tengan éxito.

  3. Confusión y desorganización del enemigo: Un ataque multidireccional también puede generar confusión en las filas enemigas. La necesidad de responder a amenazas que provienen de diferentes direcciones puede desorganizar la defensa y dificultar la coordinación efectiva de la respuesta.

  4. Destrucción de blancos fuertemente defendidos: Los objetivos bien defendidos, como instalaciones militares clave, centros de comando y control, o buques de guerra, requieren ataques con alto grado de precisión y potencia. La capacidad de golpear simultáneamente desde diferentes direcciones aumenta la probabilidad de que se puedan neutralizar o destruir estos blancos. Incluso si parte de la defensa logra interceptar algunos misiles o drones, otros pueden seguir su curso y alcanzar el objetivo.

Un ejemplo claro de la efectividad de esta táctica se observó en el ataque a las instalaciones petroleras de Aramco en Arabia Saudita en 2019. En este ataque, una combinación de misiles de crucero y drones fueron lanzados desde diferentes direcciones hacia las instalaciones. Este ataque coordinado saturó las defensas antiaéreas saudíes, que no pudieron interceptar todas las amenazas, resultando en daños significativos.

Otro ejemplo es el uso de drones suicidas (también conocidos como loitering munitions) en el conflicto de Nagorno-Karabaj en 2020, donde Azerbaiyán utilizó enjambres de drones para atacar simultáneamente desde diferentes ángulos, superando las defensas armenias y destruyendo posiciones fortificadas y sistemas antiaéreos.

Un tercer ejemplo, más cercano a nosotros, lo presenta el protocolo de asalto de posiciones a trincheras argentinas por parte de infantes de marina británicos (Royal Marines). Los asaltantes se distribuían de a tres cubriendo un amplio abánico frente a la posición argentina y realizaban la corrida. Los defensores al emerger recibían fuego de múltiples direcciones, lo que los confundía y daba ventaja al atacante.

Finalmente, la capacidad de ejecutar ataques multidireccionales simultáneos, ya sea mediante misiles, drones o cualquier otra fuerza o una combinación de ellas, es una herramienta poderosa en el arsenal militar moderno. Este tipo de ataques no solo aumenta la probabilidad de éxito contra objetivos bien defendidos, sino que también representa una evolución en las tácticas de guerra que busca maximizar el impacto y minimizar la capacidad de respuesta del adversario. A medida que la tecnología avanza y los sistemas de armas se vuelven más autónomos y precisos, es probable que esta táctica se convierta en un estándar en los conflictos futuros. Imagine el lector si el Comando de Aviación Naval hubiese contado con esa capacidad en sus Exocet lo inexorable que hubiese el ataque a un blanco altamente protegidos como los portaaviones del Task Force británica en Malvinas.

lunes, 1 de enero de 2024

Pod ECM: AIL Cutler Hammer AN/ALQ-99 TJS

AIL Cutler Hammer AN/ALQ-99 TJS

Cápsula de interferencia táctica.


por Gian Vito || Aerei Militari
2010





Considerado el sistema de interferencia táctica occidental más poderoso, el ALQ-99 se desarrolló a partir de 1966 y entró en funcionamiento en 1969. Los dos aviones EW principales anteriores, el EA-3 Skywarrior y el EB-66 Destroyer, no pudieron escoltar al caza. -Los bombarderos y sus bloqueadores de bombardeos ya no pudieron garantizar un rendimiento suficiente en Vietnam. Se suponía que el nuevo "sistema de interferencia inteligente" bloquearía efectivamente los radares de defensa aérea distantes (GCI-alerta temprana) y los radares de seguimiento para sistemas convencionales y de misiles. Además de proporcionar capacidades de interferencia de comunicaciones auxiliares y ELINT. Las primeras versiones encontraron uso en Vietnam. El EA-6B Prowler, el EF-111A Raven y el EA-18 Growler estaban equipados con él. Se produjeron aproximadamente 550 vainas ALQ-99 y 50 tarimas ALQ-99E.

EA-6B Prowler

El ALQ-99 fue uno de los primeros sistemas de interferencia controlados por computadora. Para reducir la carga de procesamiento, se utilizan mapas de amenazas de radar precargados para ayudar a identificar a las emisoras. La computadora recibe datos de los receptores (amplitud-DF) conectados principalmente a la distintiva "pelota de fútbol" en la cola. Los componentes del SIR (originalmente ALR-42) cubren las bandas de 360° 3, 4, 5, 6, 7, 8, 9 y 10 y un par de antenas adicionales en los lados del timón cubren las bandas 1 y 2. La función principal del SIR (receptor integrado del sistema), que analiza las emisiones a través de 5 escáneres (SHR), es proporcionar datos de amenazas a la unidad central de procesamiento (CPU) que identifica los emisores comparando las formas de onda con la biblioteca interna, prioriza y determina el orden de batalla electrónico para garantizar que el ALQ-99 responda a amenazas reales. El ordenador recomienda el ruido óptimo o lo realiza automáticamente, dirigiendo los haces de ruido y controlando su sintonía. La gestión eficaz de la energía permite una mayor interrupción frente a las principales amenazas.

El pod ALQ-99 tiene 4,7 metros de largo y está equipado con una turbina de nariz (RAT) de 27 kW que se activa cuando la aeronave supera los 185 km/h y suministra energía suficiente para un transmisor ya a 356 km/h (para ambos a 407 km/h). El peso varía según la banda, con un promedio de alrededor de 453 kg (1000 lb). En su interior alberga una Unidad Excitadora Universal (UEU) con seguidor de frecuencia y dirección y dos transmisores de CW conectados a antenas ajustables de alta ganancia de 1-2 kw. El excitador es un generador de señales digitales que, habiendo recibido los parámetros de amenaza del ordenador central, prepara la respuesta adecuada y la envía a los transmisores. Estos funcionan como amplificadores de la señal generada. Las antenas radiantes están conectadas al amplificador y forman el transmisor. Cuando estoy en "modo de radiación", solo irradian cuando el excitador envía una señal de RF al transmisor. La mayor parte de los 27 kW se disipa en forma de calor. La potencia máxima en modo "radiante" es de 10,8 kW para los modelos originales, 6,8 kW para los más recientes. La potencia radiada efectiva (ERP) varía según la banda de frecuencia y puede superar los 100 kW por transmisor. Las antenas pueden seguir los radares incluso si la aeronave maniobra.

El sistema ha experimentado mejoras continuas.

BASCAP (capacidad básica): el ALQ-99 original de 1972 solo cubría las bandas 1, 2, 4 y 7. Esta versión se instaló en los primeros ejemplos del EA-6B utilizados en Vietnam en 1972-73. Los modos de perturbación fueron Ruido, Punto y Generación de blancos falsos. El subsistema comjam ALQ-92 estaba bloqueando las comunicaciones entre GCI y los cazas enemigos.

XCAP (Expanded Capability): En 1973 el ALQ-99A dobló las bandas añadiendo 5,6,8 y 9 contra radares de alta frecuencia. Se ha ampliado el software informático y se ha añadido la capacidad de registro para el análisis de nuevas amenazas y nuevos excitadores capaces de operar también en “track-breaking” y “constante tasa de falsas alarmas”. La computadora AYA-6 ha sido mejorada. Se ha actualizado la configuración con dos variantes, la ALQ-99B más fiable y la ALQ-99C con mejoras de hardware respecto a la B. También se han equipado con el Sistema de Evaluación y Procesamiento Electrónico Táctico (TERPES) para análisis de fin de vida Orden de batalla electrónico y misión de interferencia de datos de empleo. Estuvieron presentes los sistemas de autodefensa ALQ-100 trackbreaker y APR-27 para detección de SAM.

ICAP(Capacidad mejorada): ALQ-99 era originalmente un sistema semiautomático, debido a la confiabilidad insuficiente de las computadoras. El aumento de la "densidad de pulso electrónico" pronto hizo que los operadores fueran demasiado lentos. Para superar las limitaciones, apareció el programa ICAP en 1976, operando con la variante ALQ-99D, aún con procesadores analógicos. Con menores tiempos de respuesta gracias a una computadora AYA-6B más rápida, nuevos codificadores y sintonizadores digitales para los transmisores. Se añade el ALQ-126 multibanda para track-breaking. Con el ICAP se redistribuye la carga de trabajo de los operadores. Queda un defecto: cada pod está dedicado a una banda específica. Antes de la misión deben cargarse según las amenazas previstas. Se necesitan más aviones para cubrir todas las bandas. Los sistemas permiten interferencias entre 64 Mhz y 10 Ghz. Disponible como opción la “cortadora de granzas” ALE-43 para crear pasillos de hasta 150 km de longitud. ALQ-92 a veces se reemplaza con ASQ-191.

ICAPII : La mejora comenzó en 1980. Aparece el nuevo ALQ-99F. Las bandas congestionadas pasan a la 9 y se reemplaza el ALR-42 por el ALR-74 que opera entre 0,5 y 10 GHz (bandas CI) con cobertura del receptor extendida hasta el límite superior de la banda 7, en 4 GHz (anteriormente estaba en 3,5 GHz). Se divide en 3 bloques: 82, 86 y 89/89A. Utiliza una computadora tres veces más rápida (AYK-14) con memoria cuádruple y un procesador de señales que reacciona automáticamente a la primera amenaza. Funciona en modo automático, semiautomático o manual. En los dos últimos casos el operador controla los bloqueadores o selecciona el tipo de radar a atacar. El excitador analógico (generador de señales perturbadoras) se sustituye por un “excitador universal” multibanda digital. Las antenas ahora están orientadas electrónicamente y la salida es de 1 Kw/Mhz. Las vainas, con dos transmisores, pueden operar en dos bandas, seleccionables en vuelo. Esto le permite liberar torres sin renunciar a la interferencia simultánea en varias bandas. También tienen capacidades limitadas de interferencia de comunicaciones. El ICAP-II inicial tiene limitaciones: en el procesamiento de pulsos (no más de 50000 pps), en la cantidad de amenazas que se pueden manejar simultáneamente (debido a los 5 SHR), y en los cambios de modo de los radares durante la interferencia (hay sin transparencia). Mejora la gestión del ruido y la identificación de estaciones. Con el Block 82 de 1984 se introduce un HARM de capacidad limitada, con un "programa intensivo" de 18 meses. El último Bloque 86 está equipado con ellos en origen. El ordenador y el comparador de señales están integrados en una unidad. Esto le permite liberar torres sin renunciar a la interferencia simultánea en varias bandas. También tienen capacidades limitadas de interferencia de comunicaciones. El ICAP-II inicial tiene limitaciones: en el procesamiento de pulsos (no más de 50000 pps), en la cantidad de amenazas que se pueden manejar simultáneamente (debido a los 5 SHR), y en los cambios de modo de los radares durante la interferencia (hay sin transparencia). Mejora la gestión del ruido y la identificación de estaciones. Con el Block 82 de 1984 se introduce un HARM de capacidad limitada, con un "programa intensivo" de 18 meses. El último Bloque 86 está equipado con ellos en origen. El ordenador y el comparador de señales están integrados en una unidad. Esto le permite liberar torres sin renunciar a la interferencia simultánea en varias bandas. También tienen capacidades limitadas de interferencia de comunicaciones. 

ADVCAP (Bloque 91)(Advanced Capability): mientras continúa la mejora de los Prowlers actuales, a partir de 1983 se inicia un programa avanzado destinado a superar las limitaciones del sistema de forma radical. Un grupo receptor-procesador (RPG) mejorado con capacidad de visualización se inserta en un fuselaje modificado estructuralmente, con nuevos motores, dos pilones adicionales y varias mejoras aerodinámicas y técnicas. Los interferómetros y el GPS funcionan junto con las antenas de radiogoniometría anteriores para mejorar la detección de radar (geolocalización) y proporcionar datos más precisos a los HARM. Dos computadoras AYK-14 y un nuevo procesador aumentan la capacidad a más de 1 millón de pps y permiten el procesamiento de formas de onda complejas como Coded y Chirp, en pulsos comprimidos a través de COCM (capacidad de contramedidas coherentes). Para contrarrestar los radares de agilidad de frecuencia de banda ancha, ADVCAP utiliza escáneres más rápidos (SHR) y una "actualización de excitador universal de banda más ancha" (UEU). Aparecen un nuevo transmisor de banda 2/3 y uno en banda 9/10, en desarrollo desde 1991 también para el EF-111A. Concebido para combatir mejor los enlaces de datos de redes integradas (red C3), utiliza el nuevo pod comjam ALQ-149 parcialmente efectivo también contra algunos tipos de radar (como el "Spoon Rest"). Finalmente está preparado para el JTIDS y el nuevo ALQ-165 (ASPJ) para defensa personal. Concebido para combatir mejor los enlaces de datos de redes integradas (red C3), utiliza el nuevo pod comjam ALQ-149 parcialmente efectivo también contra algunos tipos de radar (como el "Spoon Rest"). Finalmente está preparado para el JTIDS y el nuevo ALQ-165 (ASPJ) para defensa personal. Concebido para combatir mejor los enlaces de datos de redes integradas (red C3), utiliza el nuevo pod comjam ALQ-149 parcialmente efectivo también contra algunos tipos de radar (como el "Spoon Rest"). Finalmente está preparado para el JTIDS y el nuevo ALQ-165 (ASPJ) para defensa personal.

Se esperaba que el costo fuera de más de $ 4 millones por unidad. El primer prototipo se entregó en 1988. Las pruebas dieron positivo. Pero en 1994, la Marina de los EE. UU. se vio obligada a cancelar el contrato, recomendando una alternativa económica con los fondos disponibles.

ICAP-II (bloque 89): en 1996, con los fondos disponibles, se renovó una parte de la flota. La capacidad de análisis aumenta a 250.000 pps, la velocidad de escaneo (ancho de banda SHR) aumenta 20 veces. Se mejoran las antenas de las bandas 7,8,9,10. Los sistemas de recepción están configurados para interferometría. Gracias a un mejor software, la sola computadora AYK-14 es suficiente y con un procesamiento más rápido. Se incluye el nuevo "Excitador Universal", se agrega un transmisor para las bandas 2/3, que permite interferir en 8 bandas, un receptor en la banda 10 y varias otras mejoras. Las capacidades finales se estiman de manera optimista en el 80 % de ADVCAP al 20 % del costo. Su debilidad radica en la falta de cobertura en las bandas bajas,

ICAP II + (Fase 2) Bloque 89A: trae toda la flota a un estándar común y forma la base para todas las mejoras futuras. Está precedido por una primera fase "Acelerada" en 1996 que actualiza el antiguo Block 82 a la serie 86/89 y luego lleva todo a la nueva configuración en 1998 (IOC en 2000). Varios cambios revolucionan las capacidades: la actualización del excitador Universal (UEU) entra en funcionamiento en 1999 y reemplaza al excitador Universal digital anterior. Finalmente, la capacidad se logra en la banda 9/10 al permitir que los pods ALQ-99 interfieran en la banda J. Se introduce la actualización para transmisores de baja frecuencia (LBT) en las bandas 1, 2 y 3. Los transmisores ahora pueden aceptar A/B- señales de banda RF desde el excitador y salida a través de las antenas en la cápsula. Las perturbaciones se irradian en modo omni, comunicaciones bidireccionales o sectoriales y compatibles con interferencias. La computadora principal AYK-14 modifica el procesador de tarjeta única a circuito integrado de muy alta velocidad. El programa “Modificación de conectividad” permite que el nuevo Terminal Táctico Avanzado Multimisión (MATT) comunique, reciba y correlacione datos vía Módem de Datos Mejorado (IDM) digital desde plataformas externas (TRAP, TADIX B y TIBS), incluidas las satelitales. Una aplicación típica es el paso de datos a F-16 armados con HARM. La integración no es óptima: se utiliza un ordenador portátil conectado a los instrumentos en el habitáculo trasero. La precisión de la navegación, fundamental para la "geolocalización", se mejora combinando el GPS con el sistema inercial: la precisión alcanza los 16 metros. Nuevas radios completan el equipamiento.

ICAPIII : casi alcanzó las capacidades esperadas y nunca realizó ADVCAP, con una efectividad estimada 4-5 veces mayor que los modelos anteriores. En producción desde 2003, el IOC se deslizó gradualmente hasta 2006 debido al aumento de costos y por haber subestimado la complejidad del receptor ALQ-218(V)1 (LR-700). El núcleo de la renovación está precisamente en el nuevo receptor digital de identificación mucho más rápida y con una medición de frecuencia mucho más precisa. Se adquiere por primera vez la capacidad selectiva reactiva automática con respuesta rápida modificada para seguir los radares de agilidad de frecuencia. El sistema detecta cambios (para un número limitado de estaciones) realizando ajustes rápidos de ruido. Es capaz de operar contra un radar monopulso. Si bien un bloqueador reactivo probablemente no pueda seguir los saltos de frecuencia pulso por pulso, es más que suficiente para una ruptura de pista. La interferencia de frecuencias específicas (ancho de banda estrecho) evita implementar una interferencia preventiva (amplio espectro) con el riesgo de diluir demasiada potencia contra el radar para ser atacado. El ICAP III tiene la variante comjam USQ-113(V)3 Fase III para bloquear transmisiones de enlaces de voz y datos entre 30 y 500 Mhz. La cobertura de perturbaciones varía así desde la banda 1 (VHF) a 30 Mhz hasta la 10 (Ku) a 18 Ghz. Por lo tanto, además de los radares, las transmisiones de radio y televisión, las redes inalámbricas y los teléfonos móviles pueden verse afectados. El ICAP-III integra las mejoras del Block-89A (MIDS, MATT,

EF-111A Raven

El principal avión EW utilizado en Vietnam, el EB-66, se utilizó en el bombardeo Stand off (SOJ), ya que no podía sobrevivir en áreas defendidas por cazas ni seguir a los bombarderos. A fines de la década de 1960, la USAF, en busca de un reemplazo, mostró interés por primera vez en el ALQ-99. El Prowler, sin embargo, no era adecuado para su propósito debido al alcance insuficiente y la baja velocidad que lo hacían inadecuado para escoltar a bombarderos rápidos en áreas fuertemente defendidas. Tampoco fue diseñado para conflictos de alta intensidad en Europa. El desarrollo comenzó en 1971-74. El avión que mejor respondió al propósito fue el F-111A. El programa de conversión al nuevo EF-111A Tactical Jamming System (TJS), más tarde llamado Raven, comenzó en 1975 por Grumman. El primer EF-111A voló en 1977. Entre 1977 y 1978, algunos aviones de preproducción comenzaron las pruebas de evaluación en Eglin y Mountain Home, que demostraron las capacidades requeridas. La producción de 42 aviones comenzó en 1979, a un costo de $25 millones por avión modificado (además de los 15 ya pagados). Los aviones se entregaron entre 1981 y 1986. El EF-111A llegó al COI en 1983.

El EF-111A Raven utiliza generadores de 90 kW en lugar de los generadores de 60 kW de los modelos Attack y sistemas mejorados de aire acondicionado y refrigeración. Utiliza la variante ALQ-99E basada en la configuración ICAP/ICAP-II de la que comparte el 70% de los componentes, pero con notables diferencias: la mayor automatización para permitir que un solo operador active los sistemas, un bloqueador interno ALQ-137 (V )4 de autoprotección y un ALR-62(V)4 modificado para funcionar eficazmente durante la inspección, como un detector de amenazas terminal. El sistema utiliza más de 100 antenas en total y una computadora AYA-6. El peso total de los equipos electrónicos alcanza las 3,15 toneladas.

El ALQ-99E es un sistema modular que presenta 10 antenas independientes de 2 kw dirigidas electrónicamente (el doble de la potencia de las antenas Prowler) dentro de una paleta de 4,85 metros de largo debajo del fuselaje que pesa 2700 kg. Dos antenas de hoja a los lados del fuselaje están dedicadas a bloquear las bandas bajas. Las antenas operan en las frecuencias de 64 MHz a 8 GHz (bandas 1,2, 4, 5,6, 7, 8 y 9). El ALQ-99E emplea 6 receptores multicanal sintonizados digitalmente y 5 excitadores, cada uno de los cuales activa 2 transmisores. Las cuatro bandas 4, 7, 8 y 9 tienen dos transmisores cada una, las bandas 5, 6 un solo transmisor cada una, pero son posibles otras combinaciones. Las técnicas típicas utilizadas son la andanada de ruido, la interferencia puntual, el barrido puntual y la generación de objetivos falsos. ALQ-99E tiene tres modos de operación: Automático: El procesador detecta las señales y activa directamente el ruido. Semiautomático: el sistema detecta amenazas, las identifica y sugiere la acción adecuada al operador que selecciona el tipo de molestia. Manual : El operador explora ciertas partes del espectro, identifica las amenazas y selecciona las molestias.

Antes de la misión, el sistema se programa con información sobre los sistemas de radar previstos. Así es posible seguir rápidamente sus emisiones, mediante técnicas de comparación de señales, localizarlas y establecer sus prioridades, recomendando la acción adecuada o respondiendo de forma automática. Los receptores detectan radares a largas distancias, incluso superiores a 400 km, los identifican, localizan y asignan automáticamente excitadores y transmisores perturbadores, con las modulaciones óptimas amplificadas a alta potencia. La información sobre amenazas no presentes en la memoria puede ser ingresada por el operador de EW con los sistemas de a bordo (con un procedimiento bastante lento) o cambiando el software antes de la misión: la actualización toma solo 5 minutos. El operador EW tiene una pantalla multifunción CRT,

Los 10 transmisores tienen una salida efectiva combinada de aproximadamente 1 MW, 2-3 veces el potencial del Prowler. Para evitar sobrecargas, las antenas se activan sucesivamente. A plena potencia provocan una ralentización perceptible de la aeronave. Las emisiones se pueden seleccionar en modo "direccional", "medio omnidireccional" o "totalmente omnidireccional". El uso de antenas de mayor ganancia permitiría, en caso de ser necesario, aumentar su efectividad contra AWACS, pero dirigir toda la perturbación sobre un solo objetivo no permitiría atacar a otros.El EF-111A puede operar contra radares con agilidad de frecuencia.

ALQ-99E SORBO: El modelo en servicio no tenía cobertura en las bandas altas y no hubiera podido hacer frente al SA-10/12. En 1984, se otorgó un contrato de desarrollo y mejora a Eaton AIL-Grumman. Incluía nuevos excitadores avanzados capaces de proporcionar más modulaciones de ruido, un nuevo procesador de señal con más memoria y modificaciones del receptor con un convertidor de analógico a digital. Los cambios fueron similares a los del programa ADVCAP, pero menos ambiciosos. El ALQ-99E tenía una gran reserva de memoria (25-50% más que el nivel usado), útil para cualquier actualización. Sin embargo, ya en 1987, el proyecto se había pospuesto dos años debido a problemas con el procesador IBM Magic 1750A. El programa fue suspendido en 1988 debido a aumentos excesivos de costos, los retrasos acumulados y la falta de avances sustanciales. En 1989 se revivió y en 1991 se convirtió en el Programa de mejora del sistema (SIP) que, con un desarrollo previsto de 3 años, se esperaba que estuviera operativo en 1996. Incluía mejoras en el ALR-62(V)4, un transmisor en 4 bandas más confiables, un nuevo codificador/procesador digital (E/P), reemplazo de 2 de los 5 excitadores multibanda/multipunto con un modelo reprogramable de microprocesador digital (Digital Based Exciter-DBE), un nuevo auto- sistema de defensa ALQ-189 y misiles HARM.

Pero el proyecto SIP ($4,5 millones por avión) ha encontrado numerosos obstáculos que han llevado a una redefinición del cronograma de desarrollo para todos los componentes involucrados. Para 1994 solo se completó el desarrollo del nuevo ALR-62I y la mejora de los transmisores en las bandas 1,2 y 4 con reducción del haz de interferencia y mayor directividad. Un programa paralelo (AMP) ha mejorado el radar, la instrumentación e insertado un nuevo INS/GPS. En 1995, ante el aumento de costes, la USAir Force anunció la retirada del EF-111A a partir de 1997. La decisión había tenido en cuenta los análisis realizados en el Nellis Electronic Combat Range de Nevada. En los ejercicios, los EA-6B mejorados superaron a los EF-111A. No todo el trabajo se perdió:

En comparación con los Merodeadores contemporáneos, el Cuervo tenía capacidades superiores. El sistema fue más rápido en términos de adquisición e identificación. Los aproximadamente 40 aviones, en términos de potencia y número de transmisores, irradiaron mucha más energía contra una mayor cantidad de radares que toda la fuerza de Prowler. Operaban a velocidades supersónicas, sin la resistencia aerodinámica de las 5 cápsulas externas del rival. El fuselaje sirvió como escudo entre las secciones activa (debajo del fuselaje) y pasiva (timón). De esta manera mejoró la recepción y fue posible continuar la búsqueda de señales incluso durante la transmisión de perturbaciones (look-through), siguiendo mejor los cambios de frecuencia. Sin embargo, el haz de interferencia de las cápsulas externas del EA-6B interfirió con los receptores. El Cuervo no tenía, sin embargo,

La retirada fue un error, según muchos, dada la proliferación de sistemas mejorados más antiguos y el nuevo SA-10/12. Pero la doctrina operativa de los años 80 preveía la interferencia de los radares de combate y menos de los de avistamiento. Esto favoreció a los EA-6B con capacidades más pequeñas pero pods que se adaptan más fácilmente a los nuevos modos; sin embargo, los Ravens habrían requerido amplias modificaciones de hardware para lograr el mismo resultado. Más tarde, el paso de SEAD (Supresión de las defensas aéreas enemigas) "muerte suave" a DEAD (Destrucción) "muerte dura" y el despliegue de aviones Stealth, permitió que menos aviones eliminaran físicamente las amenazas con menos misiones. El aumento de costes del proyecto SIP hizo el resto.

El ALQ-99 en combate
El sistema se ha utilizado en todos los conflictos desde la época de Vietnam. Pero, ¿qué es capaz de hacer ALQ-99? Puedes hacerte una idea leyendo algunos enunciados sobre ejercicios realistas realizados en polígonos especiales. Se realizaron algunas pruebas contra el E-3 AWACS. Los resultados (secretos) permanecieron ocultos detrás de la frase "el EF-111 funcionó bien". Grumman afirmó que 4-5 EF-111A colocados en órbitas adecuadas podrían paralizar el Pacto de Varsovia en Europa central a lo largo de todo el frente, desde el Báltico hasta el Adriático. Durante una de las pruebas experimentales, un Raven provocó un bloqueo total del tráfico de radio y televisión en toda la costa oeste de los Estados Unidos. El radio de interferencia máximo varía según el tipo de misión desde un mínimo de 50 km para una misión de escolta a baja altitud hasta un máximo de más de 400 km para un EF-111A de gran altitud. Un alcance de 150-200 km permite una excelente cobertura y alta potencia. Ocurría con frecuencia, durante los ejercicios, que los receptores F-4G Wild Weasel eran inútiles y los radares F-15 estaban completamente cegados. Por razones de seguridad, los EF-111A se vieron obligados periódicamente a desactivar los bloqueadores, para que los controladores pudieran detectar una vez más la posición de la aeronave comprometida. El ruido de bombardeo rara vez se usa porque también perturba las transmisiones amistosas. El "punto de barrido" y la "generación de objetivos falsos" son más flexibles. Este último es capaz de crear tantos objetivos espurios que "blanquea" una pantalla de radar. Está claro que dicho avión se considera un "objetivo de alto valor". Los planificadores soviéticos creían que los Ravens eran una amenaza principal: los sistemas SA-10/12 se modificaron para rastrear pasivamente a los bloqueadores y triangularlos rápidamente. Para evitar el seguimiento, los Prowlers y los Ravens interfieren los radares a intervalos: así confunden a los sensores variando continuamente la posición y la intensidad de los atascos y evitan atraer misiles equipados con guía HOJ (autoguía sobre interferencia). A las enormes capacidades EW se suman las ELINT. 

Para entender los altos poderes involucrados, se necesita un ejemplo. Un radar típico tiene un ancho de banda de 10 MHz. Si tomo un "Spot Jammer" de 1kw y distribuyo la energía a través del radar, obtendré 100 watts/Mhz. Una buena potencia. Pero si quiero interrumpir toda una banda ancha de 2 GHz (2000 Mhz) con un bloqueador de bombardeo, los 1000 vatios iniciales solo darán 0,5 vatios/Mhz. Para que todo vuelva al valor inicial, se necesitarán 200 kw.

La apertura del haz generado (30°) es el principal factor limitante: se disipa mucha energía donde no se necesita. Y el atasco de barrera ofrece, sin embargo, una potencia limitada en el ancho de banda que ocupa el radar en ese instante. A pesar de la alta potencia, el sistema ya es antiguo (se remonta a la época de la electrónica de válvulas) y ya no es capaz de garantizar un alcance superior a 100-150 km contra radares asociados a sistemas de suministro de aire más modernos o modernizados. Estos son ahora capaces de resistir, a una distancia de 100 km, perturbaciones del orden de 2 kw/Mhz. Otro problema se deriva del hecho de que los bloqueadores de bombardeos interfieren indiscriminadamente todas las transmisiones, incluso las "amistosas", e impiden las comunicaciones por radio entre el bloqueador y las fuerzas aliadas.

La misión principal involucra Stand off jam contra alerta temprana, GCI y radares de adquisición. Por lo general, un par de aeronaves se posicionan para orbitar un área planificada con datos INS y GPS: cuando la primera aeronave inicia el giro de salida, la otra toma el relevo, continuando así la interferencia ininterrumpida.

Otras misiones involucran la defensa de la flota de los bombarderos enemigos: la posición de las unidades navales se oculta mediante métodos de engaño y luego se cambia a la interferencia activa de los radares de ataque enemigos. O aprovecha las capacidades de ELINT para localizar la flota opuesta. La perturbación puede proteger su propia fuerza de ataque al retrasar su detección.

La función Close-in Jam protege a las aeronaves de la interdicción que se aproxima al FEBA (borde delantero del área de batalla). El Jammer sube y activa los bloqueadores, oscureciendo la vigilancia móvil y los radares de seguimiento, dificultando la coordinación de las defensas opuestas y haciéndolas ineficaces contra el equipo de autodefensa ECM a bordo de los aviones de ataque.

Finalmente, se ofrece cobertura a aeronaves de apoyo táctico (CAS) y blindaje a aeronaves AWACS, aeronaves de reconocimiento, cisternas y similares. Puede parecer contrario a la intuición, pero incluso los Stealth explotan de manera rentable la presencia de aviones EW. Con una ventaja: dado que la firma del radar es muy pequeña, la interferencia puede perder por completo el sigilo en el ruido de fondo...

Growler EA-18G

El nuevo Growler reemplaza al EA-6B Prowler como el principal avión de ataque electrónico. Utiliza la configuración básica del último EA-6B, el ICAP III. El receptor primario es el AN/ALQ-218(V)2 TJR, variante del anterior, más compacto. La electrónica se reubicó en la bahía previamente ocupada por el cañón M-61A2 Vulcan con 28 antenas en cada módulo de punta de ala. El ALQ-218 utiliza una combinación de interferómetros de matriz (base corta, media y larga) en 8 antenas de interferómetro de línea de base larga (LBI) en el fuselaje. Opera simultáneamente con la perturbación (look-through) en 360°, con 2° de precisión direccional y un error máximo de 5-10% en la distancia de detección (geolocalización). El sistema verifica el “orden de batalla electrónico” (EOB) esperado, lo actualiza y prepara los bloqueadores ALQ-99. La perturbación reactiva se implementa en una banda estrecha concentrando energía en la amenaza (selectivo), sin desperdicio. El ALQ-218 sigue cambios rápidos en la frecuencia y las tácticas del radar enemigo usando dos modos. En "modo de seguimiento" ataca solo las frecuencias utilizadas por la emisora. En "trailing mode" ataca tanto la frecuencia en uso como la del último "hop" (salto) detectado. En todas las frecuencias cubiertas por el ALQ-99. Los misiles AGM-88 se implementan mejor en el modo de "alcance conocido". Otra diferencia, con respecto al Prowler, es el uso del nuevo comjam ALQ-227(V)1, versión digital del USQ-113, capaz de detectar mejor los canales de radio y bloquearlos en un mayor número de frecuencias, a través de banda baja. Cápsulas ALQ-99. Como hemos visto, los dispositivos de interferencia pueden interrumpir seriamente las comunicaciones por radio. El EA-18G cuenta con INCANS (sistema de cancelación de interferencias) que permite comunicaciones UHF durante interferencias. No menos importante es el radar APG-79 AESA que, a las conocidas capacidades multiobjetivo, combina una capacidad de interferencia direccional particularmente eficaz. El MIDS (enlace 16), el MATT y equipos similares ya presentes en el EA-6B completan el equipamiento.

El futuro: NGJ
The Growler está configurado para acomodar un nuevo bloqueador en construcción luego de una licitación con cuatro compañías competidoras. Los transmisores solicitados serán más precisos y potentes: la solicitud habla de 1 Mw. El "Jammer de próxima generación" seguirá estando contenido en una cápsula y también está destinado a una posible variante EW del F-35. La solución preferida considera el uso de antenas de matriz en fase (similares a AESA) capaces de perturbar en "tiempo compartido" muchos transmisores con haces de interferencia muy pequeños y concentrados dirigidos instantáneamente al radar objetivo. La energía requerida (60 kw) podría ser suministrada por una turbina con baja resistencia externa pero no se excluyen otras soluciones. Se espera la entrega a partir de 2018.

viernes, 5 de mayo de 2017

EW: Sistema ELINT ASTAC (Francia)

Sistema ELINT ASTAC (Francia) 



Descripción 

ASTAC (Analyseur de Signaux TACtiques) es un sistema aéreo táctico de reconocimiento electrónico que consiste en un conjunto de sensores internos o montados en un pod y una estación terrestre de procesamiento. Su objetivo es realizar la detección, identificación y localización de cualquier tipo de radar en un ambiente muy denso. Un enlace de datos entre la aplicación del pod y la estación de tierra permite una muy rápida acumulación de la orden electrónica de la batalla de las características observadas área. Las principales características del sistema son una cobertura de frecuencias muy amplio, ancho de banda instantáneo de ancho, alta sensibilidad, alta capacidad de discriminación y de alta dirección de precisión de la medición por interferometría. El sistema es totalmente automático, totalmente reprogramable y posee una capacidad de procesamiento muy alta velocidad de hasta 20 radares. Puede procesar radar de pulso modulado con la diversidad de repetición de impulsos internos o la agilidad, o la diversidad de radio frecuencia o la agilidad, así como la compresión de impulsos, de onda continua (CW) y sistemas interrumpidos. El ASTAC CW utiliza dos receptores de superficie de banda ancha a la compresión de ondas acústicas. Un receptor se utiliza para obtener una medición muy precisa de la frecuencia del radar y los dos juntos pueden manejar con agilidad de frecuencias emisores. El sistema utiliza la interferometría fase de medición de arreglos de antenas para determinar el azimut de cualquier operación emisor amenaza dentro de las bandas de frecuencia que están cubiertos (0,5 a 18 GHz con 18 a 40 GHz o 0,1 a 0,5 GHz como opción). Cuando se engloba en un pod, el ASTAC puede almacenar los datos adquiridos en un subsistema de registro a bordo, así como transmitir a su estación asociada con un enlace de datos UHF. 






Janes

lunes, 24 de abril de 2017

Autoprotección aérea: Pods ECM franceses

 Pods ECM franceses 
Por Tom Cooper 

Nombre completo y designación: Barracuda 
Versiones: desconocido 
Propósito: Pod ECM ligero de autodefensa. 

Visto por primera vez a finales de 1980, en los Mirage 2000 de la Fuerza Aérea francesa e india, el Barracuda aparentemente funciona en dos bandas, y por lo general se porta en el puerto del afuste externo subalar (izquierdo), a menudo en conjunto con dispensador de bengalas y chaff Phimat (ver abajo) . 

 


Nombre completo y designación: Barax 
Versiones: desconocido 
Propósito: pod de peso ligero 

Visto por primera vez a principios de 1980, el Barax cubre dos bandas, y estuvo en servicio generalizado con la Fuerza Aérea francesa a finales de la década, visto montado en Mirage F.1CRs y F.1CTs, Mirage 2000 y Jaguar A. 

 
Mirage F.1CT de la Fuerza Aérea Francesa visto portando un pod ECM Barax en el puerto de sujeción subalar externo. (Foto: AdA) 

Caiman 

Nombre completo y designación: Thomson-CSF TMV-004 (CT51J) Caiman 
Versiones: desconocido 
Propósito: pod ECM ofensivo de largo alcance 

Visto por primera vez a principios de 1980, el sistema Caiman consta de dos grandes vainas (s), el peso y las medidas de las cuales por lo general se impiden a los aviones portantes llevar otras armas más que misiles aire-aire para auto-protección. El Caimán se sabe que han sido exportados a Irak, a mediados de la década de 1980, y luego vio a un uso operativo durante la guerra en el Chad. Desde entonces se conoce como un altamente potente y eficaz sistema. Visto siendo usados en Mirage F.1EQ (Iraq) y Jaguar As (Fuerza Aérea Francesa). 


 
 
Jaguar A de la Fuerza Aérea visto con el gran pod ECM Caiman en poste bajo las estribor interior. Tenga en cuenta también el dispensador Phimat en el punto de sujeción exterior. (Foto: AdA) 


Remora 

Nombre completo y designación: Thomson-CSF TMV-002 Remora 
Versiones: DB-3141 (banda baja) y DB-3163 (banda alta) 
Propósito: pod ECM defensivo 

Originalmente operaba sólo en una banda, la serie DB se convirtieron después en varios pods más pequeños, algunos de los cuales fueron exportados a varios países, incluyendo a Irak (en 1984), y la India (a partir de mediados del decenio de 1980). Las últimas versiones conocidas de Remora pueden operar en dos bandas. Hasta ahora ve transportado por los Mirage 2000Hs de la Fuerza Aérea India. 


 
 
Mirage 2000H de la Indian Air Forcevisto portando un pod ECM Remora en el punto de sujeción subalar exterior. (Foto: Bharat-Rakshak.com) 


Phimat 

Nombre completo y designación: Phimat 
Versiones: desconocido 
Propósito: dispensador de bengalas y chaff 


El Phimat está ampliamente difundido en servicio no sólo con la fuerza aérea francesa sino también con otras fuerzas aéreas incluyendo Ecuador, Egipto, India, y Omán. Es usualmente visto siendo portado por Mirage F.1s y Jaguars. 

 

ACIG