martes, 2 de enero de 2024

Caza pesado: El problemático Messerschmitt Me 410 Hornisse


Messerschmitt Me 410 Hornisse: el bombardero alemán que no fue rival para los cazas aliados

Ryan McLachlan ||| War History Online




Crédito de la foto: Hugh Llewelyn / Wikimedia Commons CC BY-SA 2.0

El Messerschmitt Me 410 Hornisse fue un destructor de bombarderos y caza pesado bimotor alemán operado por la Luftwaffe durante la Segunda Guerra Mundial. Diseñado como una mejora del Messerschmitt Me 210, fue un avión de gran éxito contra los bombarderos aliados. Sin embargo, resultó no ser rival para los cazas más pequeños y ligeros.

Desarrollo del Messerschmitt Me 410 Hornisse



Messerschmitt Me 210 sobrevolando Francia, 1942. (Crédito de la foto: Bundesarchiv, Bild 101I-363-2270-09 / Hönicke / Wikimedia Commons / CC BY-SA 3.0 de)

El desarrollo del Messerschmitt Me 210 comenzó en 1939. Sin embargo, el avión tuvo problemas importantes y la producción se detuvo después de que solo se entregaron 90 a la Luftwaffe, junto con 108 variantes construidas en Hungría. Se realizaron modificaciones, dando como resultado los modelos Me 210C y 210D, que trajeron algunas mejoras.

A pesar de esto, el avión en su conjunto todavía tenía fallas aerodinámicas. Hubo otro intento de mejorar el diseño con el Me 310, pero fue en vano. Necesitando algo que funcionara, se tomó la decisión de desarrollar un nuevo avión: el Me 410 Hornisse.

Messerschmitt Me 210 contra Me 410 Hornisse




Messerschmitt Me 210 sobrevolando Francia, 1942. (Crédito de la foto: Bundesarchiv, Bild 101I-363-2270-18 / Hönicke / Wikimedia Commons CC BY-SA 3.0 de)

El diseño general del Me 410 Hornisse era aparentemente idéntico al Me 210. La mayor diferencia se produjo con el cambio a los motores Daimier-Benz DB 603A. Estos proporcionaron al Me 410 un aumento significativo en la potencia, lo que permitió que la aeronave alcanzara velocidades más altas, así como lograr una mayor velocidad de ascenso y un techo de servicio más alto.



Los nuevos motores también permitieron que el Me 410 llevara una carga útil más pesada; el máximo era en realidad mayor de lo que cabía en la bahía de bombas del avión. Esto se solucionó agregando pilones debajo de cada ala, lo que permitió transportar externamente hasta cuatro bombas de 110 libras. El armamento defensivo, operado por un artillero, era congruente entre el Me 210 y el Me 410.

Se alargó el fuselaje y se agregaron listones de borde de ataque automáticos, mejorando el manejo. Si bien existían problemas iniciales con las lamas principales de Messerschmitt, específicamente su tendencia a abrirse debido al alto ángulo de ataque, se mejoraron y estos problemas iniciales no fueron un problema para el Me 410.



El ángulo del borde de ataque del ala también se enderezó significativamente. El Me 210 tenía uno a seis grados en el ala interior y 12,6 grados en el exterior. Esto se redujo significativamente a 5,5 grados desde el fuselaje hasta la punta del ala. Estos cambios hicieron que el Me 410 fuera más fácil de manejar.

El Me 410 fue producido y entregado a la Luftwaffe entre enero de 1943 y septiembre de 1944. Al final de la producción, se habían fabricado un total de 1.189 aviones , todos los cuales funcionaron bien y fueron del agrado de sus tripulaciones.

Especificaciones del Messerschmitt Me 410 Hornisse



Messerschmitt Me 410 Hornisse atacando un Boeing B-17 Flying Fortress sobre Europa, 1943. (Crédito de la foto: US Air Force / Edward Jablonski, Flying Fortress / Wikimedia Commons / Public Domain)

El diseño general del Me 410 Hornisse lo hizo un avión menos que atractivo. Una cabina central en tándem para una tripulación de dos estaba sobre las alas, con un dosel dividido en paneles. Los motores se colocaron en cada ala, llegando por delante del fuselaje principal. El nombre del Me 410 era correcto, ya que el diseño general, de hecho, parece una especie de insecto.



El avión podría transportar hasta 2200 libras de explosivos, incluidas las cuatro bombas de 110 libras antes mencionadas debajo de las alas. Los pilones llevaban cuatro cohetes Werfer-Granate 21. El Me 410 también llevaba una disposición de armas, incluidas dos ametralladoras MG 17 de 7,92 mm y cuatro cañones MG 151/20 de 20 mm. Dos ametralladoras MG 131 de 13 mm estaban ubicadas en “soportes de blíster laterales” y el artillero de la aeronave las manejaba a control remoto.

Introducción como caza nocturno

El Me 410 Hornisse inicialmente operó como un caza, y logró eludir a los propios cazas nocturnos de la Royal Air Force (RAF). La primera unidad de la Luftwaffe en operar el avión sobre el Reino Unido fue el V./KG 2, que perdió el primero en la noche del 13 al 14 de julio de 1943, luego de ser derribado por un de Havilland Mosquito volado por el No. 85. Escuadrón RAF.



El Me 410 también actuó como destructor de bombarderos contra los bombardeos diurnos lanzados por las Fuerzas Aéreas del Ejército de EE. UU. En este rol, ellos, esencialmente, atacaron formaciones de bombarderos, con el propósito de destruir los aviones enemigos antes de que pudieran atacar sus objetivos. Los Me 410 tuvieron éxito, anotando una gran cantidad de muertes hasta 1943.

No hay rival para los aviones de combate de los aliados.



El personal de la Royal Air Force (RAF) investiga un Messerschmitt Me 410 Hornisse derribado a lo largo de las orillas del Sangro, en Italia, 1943. (Crédito de la foto: RAF / Wikimedia Commons / Dominio público)

Sin embargo, el Me 410 Hornisse no pudo igualar a los cazas aliados ágiles, ligeros y rápidos, como el Supermarine Spitfire y el North American P-51 Mustang . En 1944, las formaciones se enfrentaron a grandes grupos de cazas aliados que escoltaban a los bombarderos. Por lo general, tomaban la forma de cazas que volaban por delante de los bombarderos, despejando los cielos de cualquier avión de la Luftwaffe en su camino. Estos encuentros vieron caer la tasa de éxito del Me 410.

El 6 de marzo de 1944, 750 bombarderos pesados ​​de la 8.ª Fuerza Aérea y su escolta de cazas se enfrentaron a los Me 410 acompañados de Messerschmitt Bf 109 y Focke-Wulf Fw 190 . El encuentro concluyó a favor de los estadounidenses. Ocho Boeing B-17 Flying Fortress fueron derribados y cuatro P-51 fueron derribados por Bf 109 y Fw 190. En comparación, los cazas estadounidenses derribaron 16 Me 410.



Otro ejemplo, el 11 de abril de 1944, vio a Me 410 derribando 10 B-17 sin sufrir pérdidas. Sin embargo, cabe destacar que no hubo ninguna resistencia por parte de una escolta. Un segundo ataque más tarde ese día vio el avión de la Luftwaffe interceptado por cazas estadounidenses. Los P-51 aliados reclamaron ocho Me 410 y tres Bf 110, matando a 16 aviadores e hiriendo a tres.

A mediados de 1944, el Me 410 fue retirado de las tareas de defensa y colocado en una función de reconocimiento, y algunos prestaron servicio durante la Batalla de Normandía. Habiendo caído en desgracia, se cesó la producción del avión, a favor de los cazas pesados.

Si bien tuvo un éxito inicial contra los bombarderos sin escolta, el Me 410 finalmente no fue rival para los cazas aliados más rápidos.







Fusil de asalto: Galil Ace 556

lunes, 1 de enero de 2024

Pod ECM: AIL Cutler Hammer AN/ALQ-99 TJS

AIL Cutler Hammer AN/ALQ-99 TJS

Cápsula de interferencia táctica.


por Gian Vito || Aerei Militari
2010





Considerado el sistema de interferencia táctica occidental más poderoso, el ALQ-99 se desarrolló a partir de 1966 y entró en funcionamiento en 1969. Los dos aviones EW principales anteriores, el EA-3 Skywarrior y el EB-66 Destroyer, no pudieron escoltar al caza. -Los bombarderos y sus bloqueadores de bombardeos ya no pudieron garantizar un rendimiento suficiente en Vietnam. Se suponía que el nuevo "sistema de interferencia inteligente" bloquearía efectivamente los radares de defensa aérea distantes (GCI-alerta temprana) y los radares de seguimiento para sistemas convencionales y de misiles. Además de proporcionar capacidades de interferencia de comunicaciones auxiliares y ELINT. Las primeras versiones encontraron uso en Vietnam. El EA-6B Prowler, el EF-111A Raven y el EA-18 Growler estaban equipados con él. Se produjeron aproximadamente 550 vainas ALQ-99 y 50 tarimas ALQ-99E.

EA-6B Prowler

El ALQ-99 fue uno de los primeros sistemas de interferencia controlados por computadora. Para reducir la carga de procesamiento, se utilizan mapas de amenazas de radar precargados para ayudar a identificar a las emisoras. La computadora recibe datos de los receptores (amplitud-DF) conectados principalmente a la distintiva "pelota de fútbol" en la cola. Los componentes del SIR (originalmente ALR-42) cubren las bandas de 360° 3, 4, 5, 6, 7, 8, 9 y 10 y un par de antenas adicionales en los lados del timón cubren las bandas 1 y 2. La función principal del SIR (receptor integrado del sistema), que analiza las emisiones a través de 5 escáneres (SHR), es proporcionar datos de amenazas a la unidad central de procesamiento (CPU) que identifica los emisores comparando las formas de onda con la biblioteca interna, prioriza y determina el orden de batalla electrónico para garantizar que el ALQ-99 responda a amenazas reales. El ordenador recomienda el ruido óptimo o lo realiza automáticamente, dirigiendo los haces de ruido y controlando su sintonía. La gestión eficaz de la energía permite una mayor interrupción frente a las principales amenazas.

El pod ALQ-99 tiene 4,7 metros de largo y está equipado con una turbina de nariz (RAT) de 27 kW que se activa cuando la aeronave supera los 185 km/h y suministra energía suficiente para un transmisor ya a 356 km/h (para ambos a 407 km/h). El peso varía según la banda, con un promedio de alrededor de 453 kg (1000 lb). En su interior alberga una Unidad Excitadora Universal (UEU) con seguidor de frecuencia y dirección y dos transmisores de CW conectados a antenas ajustables de alta ganancia de 1-2 kw. El excitador es un generador de señales digitales que, habiendo recibido los parámetros de amenaza del ordenador central, prepara la respuesta adecuada y la envía a los transmisores. Estos funcionan como amplificadores de la señal generada. Las antenas radiantes están conectadas al amplificador y forman el transmisor. Cuando estoy en "modo de radiación", solo irradian cuando el excitador envía una señal de RF al transmisor. La mayor parte de los 27 kW se disipa en forma de calor. La potencia máxima en modo "radiante" es de 10,8 kW para los modelos originales, 6,8 kW para los más recientes. La potencia radiada efectiva (ERP) varía según la banda de frecuencia y puede superar los 100 kW por transmisor. Las antenas pueden seguir los radares incluso si la aeronave maniobra.

El sistema ha experimentado mejoras continuas.

BASCAP (capacidad básica): el ALQ-99 original de 1972 solo cubría las bandas 1, 2, 4 y 7. Esta versión se instaló en los primeros ejemplos del EA-6B utilizados en Vietnam en 1972-73. Los modos de perturbación fueron Ruido, Punto y Generación de blancos falsos. El subsistema comjam ALQ-92 estaba bloqueando las comunicaciones entre GCI y los cazas enemigos.

XCAP (Expanded Capability): En 1973 el ALQ-99A dobló las bandas añadiendo 5,6,8 y 9 contra radares de alta frecuencia. Se ha ampliado el software informático y se ha añadido la capacidad de registro para el análisis de nuevas amenazas y nuevos excitadores capaces de operar también en “track-breaking” y “constante tasa de falsas alarmas”. La computadora AYA-6 ha sido mejorada. Se ha actualizado la configuración con dos variantes, la ALQ-99B más fiable y la ALQ-99C con mejoras de hardware respecto a la B. También se han equipado con el Sistema de Evaluación y Procesamiento Electrónico Táctico (TERPES) para análisis de fin de vida Orden de batalla electrónico y misión de interferencia de datos de empleo. Estuvieron presentes los sistemas de autodefensa ALQ-100 trackbreaker y APR-27 para detección de SAM.

ICAP(Capacidad mejorada): ALQ-99 era originalmente un sistema semiautomático, debido a la confiabilidad insuficiente de las computadoras. El aumento de la "densidad de pulso electrónico" pronto hizo que los operadores fueran demasiado lentos. Para superar las limitaciones, apareció el programa ICAP en 1976, operando con la variante ALQ-99D, aún con procesadores analógicos. Con menores tiempos de respuesta gracias a una computadora AYA-6B más rápida, nuevos codificadores y sintonizadores digitales para los transmisores. Se añade el ALQ-126 multibanda para track-breaking. Con el ICAP se redistribuye la carga de trabajo de los operadores. Queda un defecto: cada pod está dedicado a una banda específica. Antes de la misión deben cargarse según las amenazas previstas. Se necesitan más aviones para cubrir todas las bandas. Los sistemas permiten interferencias entre 64 Mhz y 10 Ghz. Disponible como opción la “cortadora de granzas” ALE-43 para crear pasillos de hasta 150 km de longitud. ALQ-92 a veces se reemplaza con ASQ-191.

ICAPII : La mejora comenzó en 1980. Aparece el nuevo ALQ-99F. Las bandas congestionadas pasan a la 9 y se reemplaza el ALR-42 por el ALR-74 que opera entre 0,5 y 10 GHz (bandas CI) con cobertura del receptor extendida hasta el límite superior de la banda 7, en 4 GHz (anteriormente estaba en 3,5 GHz). Se divide en 3 bloques: 82, 86 y 89/89A. Utiliza una computadora tres veces más rápida (AYK-14) con memoria cuádruple y un procesador de señales que reacciona automáticamente a la primera amenaza. Funciona en modo automático, semiautomático o manual. En los dos últimos casos el operador controla los bloqueadores o selecciona el tipo de radar a atacar. El excitador analógico (generador de señales perturbadoras) se sustituye por un “excitador universal” multibanda digital. Las antenas ahora están orientadas electrónicamente y la salida es de 1 Kw/Mhz. Las vainas, con dos transmisores, pueden operar en dos bandas, seleccionables en vuelo. Esto le permite liberar torres sin renunciar a la interferencia simultánea en varias bandas. También tienen capacidades limitadas de interferencia de comunicaciones. El ICAP-II inicial tiene limitaciones: en el procesamiento de pulsos (no más de 50000 pps), en la cantidad de amenazas que se pueden manejar simultáneamente (debido a los 5 SHR), y en los cambios de modo de los radares durante la interferencia (hay sin transparencia). Mejora la gestión del ruido y la identificación de estaciones. Con el Block 82 de 1984 se introduce un HARM de capacidad limitada, con un "programa intensivo" de 18 meses. El último Bloque 86 está equipado con ellos en origen. El ordenador y el comparador de señales están integrados en una unidad. Esto le permite liberar torres sin renunciar a la interferencia simultánea en varias bandas. También tienen capacidades limitadas de interferencia de comunicaciones. El ICAP-II inicial tiene limitaciones: en el procesamiento de pulsos (no más de 50000 pps), en la cantidad de amenazas que se pueden manejar simultáneamente (debido a los 5 SHR), y en los cambios de modo de los radares durante la interferencia (hay sin transparencia). Mejora la gestión del ruido y la identificación de estaciones. Con el Block 82 de 1984 se introduce un HARM de capacidad limitada, con un "programa intensivo" de 18 meses. El último Bloque 86 está equipado con ellos en origen. El ordenador y el comparador de señales están integrados en una unidad. Esto le permite liberar torres sin renunciar a la interferencia simultánea en varias bandas. También tienen capacidades limitadas de interferencia de comunicaciones. 

ADVCAP (Bloque 91)(Advanced Capability): mientras continúa la mejora de los Prowlers actuales, a partir de 1983 se inicia un programa avanzado destinado a superar las limitaciones del sistema de forma radical. Un grupo receptor-procesador (RPG) mejorado con capacidad de visualización se inserta en un fuselaje modificado estructuralmente, con nuevos motores, dos pilones adicionales y varias mejoras aerodinámicas y técnicas. Los interferómetros y el GPS funcionan junto con las antenas de radiogoniometría anteriores para mejorar la detección de radar (geolocalización) y proporcionar datos más precisos a los HARM. Dos computadoras AYK-14 y un nuevo procesador aumentan la capacidad a más de 1 millón de pps y permiten el procesamiento de formas de onda complejas como Coded y Chirp, en pulsos comprimidos a través de COCM (capacidad de contramedidas coherentes). Para contrarrestar los radares de agilidad de frecuencia de banda ancha, ADVCAP utiliza escáneres más rápidos (SHR) y una "actualización de excitador universal de banda más ancha" (UEU). Aparecen un nuevo transmisor de banda 2/3 y uno en banda 9/10, en desarrollo desde 1991 también para el EF-111A. Concebido para combatir mejor los enlaces de datos de redes integradas (red C3), utiliza el nuevo pod comjam ALQ-149 parcialmente efectivo también contra algunos tipos de radar (como el "Spoon Rest"). Finalmente está preparado para el JTIDS y el nuevo ALQ-165 (ASPJ) para defensa personal. Concebido para combatir mejor los enlaces de datos de redes integradas (red C3), utiliza el nuevo pod comjam ALQ-149 parcialmente efectivo también contra algunos tipos de radar (como el "Spoon Rest"). Finalmente está preparado para el JTIDS y el nuevo ALQ-165 (ASPJ) para defensa personal. Concebido para combatir mejor los enlaces de datos de redes integradas (red C3), utiliza el nuevo pod comjam ALQ-149 parcialmente efectivo también contra algunos tipos de radar (como el "Spoon Rest"). Finalmente está preparado para el JTIDS y el nuevo ALQ-165 (ASPJ) para defensa personal.

Se esperaba que el costo fuera de más de $ 4 millones por unidad. El primer prototipo se entregó en 1988. Las pruebas dieron positivo. Pero en 1994, la Marina de los EE. UU. se vio obligada a cancelar el contrato, recomendando una alternativa económica con los fondos disponibles.

ICAP-II (bloque 89): en 1996, con los fondos disponibles, se renovó una parte de la flota. La capacidad de análisis aumenta a 250.000 pps, la velocidad de escaneo (ancho de banda SHR) aumenta 20 veces. Se mejoran las antenas de las bandas 7,8,9,10. Los sistemas de recepción están configurados para interferometría. Gracias a un mejor software, la sola computadora AYK-14 es suficiente y con un procesamiento más rápido. Se incluye el nuevo "Excitador Universal", se agrega un transmisor para las bandas 2/3, que permite interferir en 8 bandas, un receptor en la banda 10 y varias otras mejoras. Las capacidades finales se estiman de manera optimista en el 80 % de ADVCAP al 20 % del costo. Su debilidad radica en la falta de cobertura en las bandas bajas,

ICAP II + (Fase 2) Bloque 89A: trae toda la flota a un estándar común y forma la base para todas las mejoras futuras. Está precedido por una primera fase "Acelerada" en 1996 que actualiza el antiguo Block 82 a la serie 86/89 y luego lleva todo a la nueva configuración en 1998 (IOC en 2000). Varios cambios revolucionan las capacidades: la actualización del excitador Universal (UEU) entra en funcionamiento en 1999 y reemplaza al excitador Universal digital anterior. Finalmente, la capacidad se logra en la banda 9/10 al permitir que los pods ALQ-99 interfieran en la banda J. Se introduce la actualización para transmisores de baja frecuencia (LBT) en las bandas 1, 2 y 3. Los transmisores ahora pueden aceptar A/B- señales de banda RF desde el excitador y salida a través de las antenas en la cápsula. Las perturbaciones se irradian en modo omni, comunicaciones bidireccionales o sectoriales y compatibles con interferencias. La computadora principal AYK-14 modifica el procesador de tarjeta única a circuito integrado de muy alta velocidad. El programa “Modificación de conectividad” permite que el nuevo Terminal Táctico Avanzado Multimisión (MATT) comunique, reciba y correlacione datos vía Módem de Datos Mejorado (IDM) digital desde plataformas externas (TRAP, TADIX B y TIBS), incluidas las satelitales. Una aplicación típica es el paso de datos a F-16 armados con HARM. La integración no es óptima: se utiliza un ordenador portátil conectado a los instrumentos en el habitáculo trasero. La precisión de la navegación, fundamental para la "geolocalización", se mejora combinando el GPS con el sistema inercial: la precisión alcanza los 16 metros. Nuevas radios completan el equipamiento.

ICAPIII : casi alcanzó las capacidades esperadas y nunca realizó ADVCAP, con una efectividad estimada 4-5 veces mayor que los modelos anteriores. En producción desde 2003, el IOC se deslizó gradualmente hasta 2006 debido al aumento de costos y por haber subestimado la complejidad del receptor ALQ-218(V)1 (LR-700). El núcleo de la renovación está precisamente en el nuevo receptor digital de identificación mucho más rápida y con una medición de frecuencia mucho más precisa. Se adquiere por primera vez la capacidad selectiva reactiva automática con respuesta rápida modificada para seguir los radares de agilidad de frecuencia. El sistema detecta cambios (para un número limitado de estaciones) realizando ajustes rápidos de ruido. Es capaz de operar contra un radar monopulso. Si bien un bloqueador reactivo probablemente no pueda seguir los saltos de frecuencia pulso por pulso, es más que suficiente para una ruptura de pista. La interferencia de frecuencias específicas (ancho de banda estrecho) evita implementar una interferencia preventiva (amplio espectro) con el riesgo de diluir demasiada potencia contra el radar para ser atacado. El ICAP III tiene la variante comjam USQ-113(V)3 Fase III para bloquear transmisiones de enlaces de voz y datos entre 30 y 500 Mhz. La cobertura de perturbaciones varía así desde la banda 1 (VHF) a 30 Mhz hasta la 10 (Ku) a 18 Ghz. Por lo tanto, además de los radares, las transmisiones de radio y televisión, las redes inalámbricas y los teléfonos móviles pueden verse afectados. El ICAP-III integra las mejoras del Block-89A (MIDS, MATT,

EF-111A Raven

El principal avión EW utilizado en Vietnam, el EB-66, se utilizó en el bombardeo Stand off (SOJ), ya que no podía sobrevivir en áreas defendidas por cazas ni seguir a los bombarderos. A fines de la década de 1960, la USAF, en busca de un reemplazo, mostró interés por primera vez en el ALQ-99. El Prowler, sin embargo, no era adecuado para su propósito debido al alcance insuficiente y la baja velocidad que lo hacían inadecuado para escoltar a bombarderos rápidos en áreas fuertemente defendidas. Tampoco fue diseñado para conflictos de alta intensidad en Europa. El desarrollo comenzó en 1971-74. El avión que mejor respondió al propósito fue el F-111A. El programa de conversión al nuevo EF-111A Tactical Jamming System (TJS), más tarde llamado Raven, comenzó en 1975 por Grumman. El primer EF-111A voló en 1977. Entre 1977 y 1978, algunos aviones de preproducción comenzaron las pruebas de evaluación en Eglin y Mountain Home, que demostraron las capacidades requeridas. La producción de 42 aviones comenzó en 1979, a un costo de $25 millones por avión modificado (además de los 15 ya pagados). Los aviones se entregaron entre 1981 y 1986. El EF-111A llegó al COI en 1983.

El EF-111A Raven utiliza generadores de 90 kW en lugar de los generadores de 60 kW de los modelos Attack y sistemas mejorados de aire acondicionado y refrigeración. Utiliza la variante ALQ-99E basada en la configuración ICAP/ICAP-II de la que comparte el 70% de los componentes, pero con notables diferencias: la mayor automatización para permitir que un solo operador active los sistemas, un bloqueador interno ALQ-137 (V )4 de autoprotección y un ALR-62(V)4 modificado para funcionar eficazmente durante la inspección, como un detector de amenazas terminal. El sistema utiliza más de 100 antenas en total y una computadora AYA-6. El peso total de los equipos electrónicos alcanza las 3,15 toneladas.

El ALQ-99E es un sistema modular que presenta 10 antenas independientes de 2 kw dirigidas electrónicamente (el doble de la potencia de las antenas Prowler) dentro de una paleta de 4,85 metros de largo debajo del fuselaje que pesa 2700 kg. Dos antenas de hoja a los lados del fuselaje están dedicadas a bloquear las bandas bajas. Las antenas operan en las frecuencias de 64 MHz a 8 GHz (bandas 1,2, 4, 5,6, 7, 8 y 9). El ALQ-99E emplea 6 receptores multicanal sintonizados digitalmente y 5 excitadores, cada uno de los cuales activa 2 transmisores. Las cuatro bandas 4, 7, 8 y 9 tienen dos transmisores cada una, las bandas 5, 6 un solo transmisor cada una, pero son posibles otras combinaciones. Las técnicas típicas utilizadas son la andanada de ruido, la interferencia puntual, el barrido puntual y la generación de objetivos falsos. ALQ-99E tiene tres modos de operación: Automático: El procesador detecta las señales y activa directamente el ruido. Semiautomático: el sistema detecta amenazas, las identifica y sugiere la acción adecuada al operador que selecciona el tipo de molestia. Manual : El operador explora ciertas partes del espectro, identifica las amenazas y selecciona las molestias.

Antes de la misión, el sistema se programa con información sobre los sistemas de radar previstos. Así es posible seguir rápidamente sus emisiones, mediante técnicas de comparación de señales, localizarlas y establecer sus prioridades, recomendando la acción adecuada o respondiendo de forma automática. Los receptores detectan radares a largas distancias, incluso superiores a 400 km, los identifican, localizan y asignan automáticamente excitadores y transmisores perturbadores, con las modulaciones óptimas amplificadas a alta potencia. La información sobre amenazas no presentes en la memoria puede ser ingresada por el operador de EW con los sistemas de a bordo (con un procedimiento bastante lento) o cambiando el software antes de la misión: la actualización toma solo 5 minutos. El operador EW tiene una pantalla multifunción CRT,

Los 10 transmisores tienen una salida efectiva combinada de aproximadamente 1 MW, 2-3 veces el potencial del Prowler. Para evitar sobrecargas, las antenas se activan sucesivamente. A plena potencia provocan una ralentización perceptible de la aeronave. Las emisiones se pueden seleccionar en modo "direccional", "medio omnidireccional" o "totalmente omnidireccional". El uso de antenas de mayor ganancia permitiría, en caso de ser necesario, aumentar su efectividad contra AWACS, pero dirigir toda la perturbación sobre un solo objetivo no permitiría atacar a otros.El EF-111A puede operar contra radares con agilidad de frecuencia.

ALQ-99E SORBO: El modelo en servicio no tenía cobertura en las bandas altas y no hubiera podido hacer frente al SA-10/12. En 1984, se otorgó un contrato de desarrollo y mejora a Eaton AIL-Grumman. Incluía nuevos excitadores avanzados capaces de proporcionar más modulaciones de ruido, un nuevo procesador de señal con más memoria y modificaciones del receptor con un convertidor de analógico a digital. Los cambios fueron similares a los del programa ADVCAP, pero menos ambiciosos. El ALQ-99E tenía una gran reserva de memoria (25-50% más que el nivel usado), útil para cualquier actualización. Sin embargo, ya en 1987, el proyecto se había pospuesto dos años debido a problemas con el procesador IBM Magic 1750A. El programa fue suspendido en 1988 debido a aumentos excesivos de costos, los retrasos acumulados y la falta de avances sustanciales. En 1989 se revivió y en 1991 se convirtió en el Programa de mejora del sistema (SIP) que, con un desarrollo previsto de 3 años, se esperaba que estuviera operativo en 1996. Incluía mejoras en el ALR-62(V)4, un transmisor en 4 bandas más confiables, un nuevo codificador/procesador digital (E/P), reemplazo de 2 de los 5 excitadores multibanda/multipunto con un modelo reprogramable de microprocesador digital (Digital Based Exciter-DBE), un nuevo auto- sistema de defensa ALQ-189 y misiles HARM.

Pero el proyecto SIP ($4,5 millones por avión) ha encontrado numerosos obstáculos que han llevado a una redefinición del cronograma de desarrollo para todos los componentes involucrados. Para 1994 solo se completó el desarrollo del nuevo ALR-62I y la mejora de los transmisores en las bandas 1,2 y 4 con reducción del haz de interferencia y mayor directividad. Un programa paralelo (AMP) ha mejorado el radar, la instrumentación e insertado un nuevo INS/GPS. En 1995, ante el aumento de costes, la USAir Force anunció la retirada del EF-111A a partir de 1997. La decisión había tenido en cuenta los análisis realizados en el Nellis Electronic Combat Range de Nevada. En los ejercicios, los EA-6B mejorados superaron a los EF-111A. No todo el trabajo se perdió:

En comparación con los Merodeadores contemporáneos, el Cuervo tenía capacidades superiores. El sistema fue más rápido en términos de adquisición e identificación. Los aproximadamente 40 aviones, en términos de potencia y número de transmisores, irradiaron mucha más energía contra una mayor cantidad de radares que toda la fuerza de Prowler. Operaban a velocidades supersónicas, sin la resistencia aerodinámica de las 5 cápsulas externas del rival. El fuselaje sirvió como escudo entre las secciones activa (debajo del fuselaje) y pasiva (timón). De esta manera mejoró la recepción y fue posible continuar la búsqueda de señales incluso durante la transmisión de perturbaciones (look-through), siguiendo mejor los cambios de frecuencia. Sin embargo, el haz de interferencia de las cápsulas externas del EA-6B interfirió con los receptores. El Cuervo no tenía, sin embargo,

La retirada fue un error, según muchos, dada la proliferación de sistemas mejorados más antiguos y el nuevo SA-10/12. Pero la doctrina operativa de los años 80 preveía la interferencia de los radares de combate y menos de los de avistamiento. Esto favoreció a los EA-6B con capacidades más pequeñas pero pods que se adaptan más fácilmente a los nuevos modos; sin embargo, los Ravens habrían requerido amplias modificaciones de hardware para lograr el mismo resultado. Más tarde, el paso de SEAD (Supresión de las defensas aéreas enemigas) "muerte suave" a DEAD (Destrucción) "muerte dura" y el despliegue de aviones Stealth, permitió que menos aviones eliminaran físicamente las amenazas con menos misiones. El aumento de costes del proyecto SIP hizo el resto.

El ALQ-99 en combate
El sistema se ha utilizado en todos los conflictos desde la época de Vietnam. Pero, ¿qué es capaz de hacer ALQ-99? Puedes hacerte una idea leyendo algunos enunciados sobre ejercicios realistas realizados en polígonos especiales. Se realizaron algunas pruebas contra el E-3 AWACS. Los resultados (secretos) permanecieron ocultos detrás de la frase "el EF-111 funcionó bien". Grumman afirmó que 4-5 EF-111A colocados en órbitas adecuadas podrían paralizar el Pacto de Varsovia en Europa central a lo largo de todo el frente, desde el Báltico hasta el Adriático. Durante una de las pruebas experimentales, un Raven provocó un bloqueo total del tráfico de radio y televisión en toda la costa oeste de los Estados Unidos. El radio de interferencia máximo varía según el tipo de misión desde un mínimo de 50 km para una misión de escolta a baja altitud hasta un máximo de más de 400 km para un EF-111A de gran altitud. Un alcance de 150-200 km permite una excelente cobertura y alta potencia. Ocurría con frecuencia, durante los ejercicios, que los receptores F-4G Wild Weasel eran inútiles y los radares F-15 estaban completamente cegados. Por razones de seguridad, los EF-111A se vieron obligados periódicamente a desactivar los bloqueadores, para que los controladores pudieran detectar una vez más la posición de la aeronave comprometida. El ruido de bombardeo rara vez se usa porque también perturba las transmisiones amistosas. El "punto de barrido" y la "generación de objetivos falsos" son más flexibles. Este último es capaz de crear tantos objetivos espurios que "blanquea" una pantalla de radar. Está claro que dicho avión se considera un "objetivo de alto valor". Los planificadores soviéticos creían que los Ravens eran una amenaza principal: los sistemas SA-10/12 se modificaron para rastrear pasivamente a los bloqueadores y triangularlos rápidamente. Para evitar el seguimiento, los Prowlers y los Ravens interfieren los radares a intervalos: así confunden a los sensores variando continuamente la posición y la intensidad de los atascos y evitan atraer misiles equipados con guía HOJ (autoguía sobre interferencia). A las enormes capacidades EW se suman las ELINT. 

Para entender los altos poderes involucrados, se necesita un ejemplo. Un radar típico tiene un ancho de banda de 10 MHz. Si tomo un "Spot Jammer" de 1kw y distribuyo la energía a través del radar, obtendré 100 watts/Mhz. Una buena potencia. Pero si quiero interrumpir toda una banda ancha de 2 GHz (2000 Mhz) con un bloqueador de bombardeo, los 1000 vatios iniciales solo darán 0,5 vatios/Mhz. Para que todo vuelva al valor inicial, se necesitarán 200 kw.

La apertura del haz generado (30°) es el principal factor limitante: se disipa mucha energía donde no se necesita. Y el atasco de barrera ofrece, sin embargo, una potencia limitada en el ancho de banda que ocupa el radar en ese instante. A pesar de la alta potencia, el sistema ya es antiguo (se remonta a la época de la electrónica de válvulas) y ya no es capaz de garantizar un alcance superior a 100-150 km contra radares asociados a sistemas de suministro de aire más modernos o modernizados. Estos son ahora capaces de resistir, a una distancia de 100 km, perturbaciones del orden de 2 kw/Mhz. Otro problema se deriva del hecho de que los bloqueadores de bombardeos interfieren indiscriminadamente todas las transmisiones, incluso las "amistosas", e impiden las comunicaciones por radio entre el bloqueador y las fuerzas aliadas.

La misión principal involucra Stand off jam contra alerta temprana, GCI y radares de adquisición. Por lo general, un par de aeronaves se posicionan para orbitar un área planificada con datos INS y GPS: cuando la primera aeronave inicia el giro de salida, la otra toma el relevo, continuando así la interferencia ininterrumpida.

Otras misiones involucran la defensa de la flota de los bombarderos enemigos: la posición de las unidades navales se oculta mediante métodos de engaño y luego se cambia a la interferencia activa de los radares de ataque enemigos. O aprovecha las capacidades de ELINT para localizar la flota opuesta. La perturbación puede proteger su propia fuerza de ataque al retrasar su detección.

La función Close-in Jam protege a las aeronaves de la interdicción que se aproxima al FEBA (borde delantero del área de batalla). El Jammer sube y activa los bloqueadores, oscureciendo la vigilancia móvil y los radares de seguimiento, dificultando la coordinación de las defensas opuestas y haciéndolas ineficaces contra el equipo de autodefensa ECM a bordo de los aviones de ataque.

Finalmente, se ofrece cobertura a aeronaves de apoyo táctico (CAS) y blindaje a aeronaves AWACS, aeronaves de reconocimiento, cisternas y similares. Puede parecer contrario a la intuición, pero incluso los Stealth explotan de manera rentable la presencia de aviones EW. Con una ventaja: dado que la firma del radar es muy pequeña, la interferencia puede perder por completo el sigilo en el ruido de fondo...

Growler EA-18G

El nuevo Growler reemplaza al EA-6B Prowler como el principal avión de ataque electrónico. Utiliza la configuración básica del último EA-6B, el ICAP III. El receptor primario es el AN/ALQ-218(V)2 TJR, variante del anterior, más compacto. La electrónica se reubicó en la bahía previamente ocupada por el cañón M-61A2 Vulcan con 28 antenas en cada módulo de punta de ala. El ALQ-218 utiliza una combinación de interferómetros de matriz (base corta, media y larga) en 8 antenas de interferómetro de línea de base larga (LBI) en el fuselaje. Opera simultáneamente con la perturbación (look-through) en 360°, con 2° de precisión direccional y un error máximo de 5-10% en la distancia de detección (geolocalización). El sistema verifica el “orden de batalla electrónico” (EOB) esperado, lo actualiza y prepara los bloqueadores ALQ-99. La perturbación reactiva se implementa en una banda estrecha concentrando energía en la amenaza (selectivo), sin desperdicio. El ALQ-218 sigue cambios rápidos en la frecuencia y las tácticas del radar enemigo usando dos modos. En "modo de seguimiento" ataca solo las frecuencias utilizadas por la emisora. En "trailing mode" ataca tanto la frecuencia en uso como la del último "hop" (salto) detectado. En todas las frecuencias cubiertas por el ALQ-99. Los misiles AGM-88 se implementan mejor en el modo de "alcance conocido". Otra diferencia, con respecto al Prowler, es el uso del nuevo comjam ALQ-227(V)1, versión digital del USQ-113, capaz de detectar mejor los canales de radio y bloquearlos en un mayor número de frecuencias, a través de banda baja. Cápsulas ALQ-99. Como hemos visto, los dispositivos de interferencia pueden interrumpir seriamente las comunicaciones por radio. El EA-18G cuenta con INCANS (sistema de cancelación de interferencias) que permite comunicaciones UHF durante interferencias. No menos importante es el radar APG-79 AESA que, a las conocidas capacidades multiobjetivo, combina una capacidad de interferencia direccional particularmente eficaz. El MIDS (enlace 16), el MATT y equipos similares ya presentes en el EA-6B completan el equipamiento.

El futuro: NGJ
The Growler está configurado para acomodar un nuevo bloqueador en construcción luego de una licitación con cuatro compañías competidoras. Los transmisores solicitados serán más precisos y potentes: la solicitud habla de 1 Mw. El "Jammer de próxima generación" seguirá estando contenido en una cápsula y también está destinado a una posible variante EW del F-35. La solución preferida considera el uso de antenas de matriz en fase (similares a AESA) capaces de perturbar en "tiempo compartido" muchos transmisores con haces de interferencia muy pequeños y concentrados dirigidos instantáneamente al radar objetivo. La energía requerida (60 kw) podría ser suministrada por una turbina con baja resistencia externa pero no se excluyen otras soluciones. Se espera la entrega a partir de 2018.

Conquista del desierto: El araucano Manuel Calfucurá en uniforme del EA

Los 'exterminados'


 

Foto Grupal del Lonco Manuel Namuncurá vistiendo el uniforme de Coronel del Ejército Argentino, junto a sus dos mujeres Rosario e Ignacia, su hermana Callayncatu Curá, hermanos y su hijo en la ciudad de Buenos Aires - Año: 24 de Marzo de 1884.

Breve reseña:
Manuel Namuncurá (Nacido: en 1811 en la Araucanía de Chile – Fallecido: el 31 de julio de 1908 en la Colonia San Ignacio, Territorio Nacional del Neuquén, Argentina) fue un lonco mapuche, hijo del célebre cacique Calfucurá. Homónimo del hermano mayor de su padre llamado Antonio Namuncurá.
Las visitas a Buenos Aires fueron repetidas en 1886, 1894 y 1897, consiguiendo finalmente del gobierno el otorgamiento de los campos de la colonia indígena de “San Ignacio” y el grado de Coronel del Ejército Argentino, afirmando la paz e integración de hecho entre su tribu y los colonos, en la confluencia del arroyo San Ignacio con el río Aluminé (Neuquén), asentamiento definitivo de la tribu, donde murió a los 97 años. Fue enterrado en el cementerio de la colonia, pero en la actualidad se desconoce la ubicación exacta.

domingo, 31 de diciembre de 2023

SGM: El Fritz X hunde al acorazado Roma

Fritz X: el primer misil guiado con precisión del mundo eliminó el buque insignia de la Armada italiana

Samantha Franco, War History Online
 
 

Crédito de la foto: Alan Wilson / Flickr CC BY-SA 2.0

El Fritz X era un misil antibuque guiado por radio alemán que tenía muchos nombres: Ruhrstahl SD 1400 X, PC 1400X, Kramer X-1 y FX 1400. Tomó prestada la tecnología de un dispositivo perforador de blindaje anterior y presentaba modificaciones críticas. que aumentó su eficacia y precisión. Esto proporcionó el gran éxito explosivo durante sus primeros despliegues. Sin embargo, varios inconvenientes demostraron que su uso era, en última instancia, ineficaz contra los aviones aliados.

PC 1400 modificado

Fritz X. (Crédito de la foto: harrypope / Flickr CC BY-NC-ND 2.0)

Diseñado por Max Kramer y fabricado por Ruhrstahl AG, el Fritz X se desarrolló a partir de la bomba PC 1400 (1400 kg). Pesaba 3.450 libras y llevaba una ojiva de 710 libras, que podía penetrar hasta 28 pulgadas de armadura cuando se dejaba caer a una altura de entre 18.000 y 20.000 pies.

En 1940, se desarrollaron varias versiones para determinar el mejor diseño. El X-2 era capaz de alcanzar velocidades más altas y se suponía que debía estar equipado con un dispositivo de localización por infrarrojos, pero el sistema se abandonó y solo se construyó uno. El X-3 era más pesado y más grande, y podía viajar a velocidades de hasta 900 MPH. Sin embargo, se determinó que el X-1 era la mejor opción, ya que era más simple de operar y desarrollar.

En 1941, la Luftwaffe llevó a cabo las pruebas del misil y, en 1943, pasó a la etapa de fabricación.

Especificaciones Fritz X Esquemas Fritz X. (Crédito de la foto: Desconocido / Departamento de la Fuerza Aérea / Wikimedia Commons / Dominio público)

El Fritz X era más aerodinámico y utilizaba el sistema de mando por radio con joystick de Kehl-Strasbourg. Tenía una cola agrandada con un marco de 12 lados que rodeaba cuatro aletas aerodinámicas. Los dos más largos estaban equipados con spoilers y dos giroscopios estabilizaron el explosivo. En una forma cruciforme asimétrica, se montó un par de alas en la parte delantera.

Los misiles fueron desplegados desde aviones Dornier Do 217K-2 y Heinkel He 177A Greif , y los bombarderos usaron sus bengalas de cola para guiarlos al soltarlos. Los spoilers estaban controlados por radio y permitían que el Fritz X se moviera según las instrucciones. Como tales, podrían ser extremadamente precisos cuando no estén sujetos a interferencias de radio por parte de los aliados.

Éxito en el Teatro Mediterráneo  

Fritz X. (Crédito de la foto: Ryan Somma / Flickr CC BY-SA 2.0)

El Fritz X se utilizó por primera vez el 21 de julio de 1943 en una redada en el puerto de Augusta en Sicilia. En ese momento, no hubo impactos confirmados y los aliados no sabían en gran medida que los alemanes estaban operando misiles guiados por radio. Sin embargo, el Fritz X pronto vio su éxito más notable en un ataque a la flota italiana en septiembre de 1943.

Tras el arresto de Benito Mussolini , el gobierno italiano inició negociaciones con los Aliados y, el 8 de septiembre, el Mando Supremo Aliado en Europa anunció que se había firmado un armisticio . Luego se hizo un plan para desertar de la flota naval italiana a los puertos aliados en Túnez y Malta. Sin embargo, los alemanes no tardaron mucho en darse cuenta y planificar su propio ataque en el viaje para evitar que los barcos llegaran a sus destinos.

Hundimiento de Roma (1940) Roma (1940), un acorazado italiano de clase Littorio. (Crédito de la foto: Sin atribuir / Wikimedia Commons / Dominio público)

Una fuerza de tres acorazados, Roma (1940),  Vittorio Veneto  e Italia (1943), seis cruceros y ocho destructores se abrieron paso por la costa oeste de Córcega, hacia Cerdeña y Túnez. Al mediodía, seis Do 217K-2 del Gruppe III de Kampfgeschwader 100 Wiking volaron hacia la flota, cada uno con un solo misil Fritz X.

El éxito más significativo provino del hundimiento del Roma , de 46.200 toneladas , el buque insignia de la flota italiana. Un Fritz X atravesó el costado de estribor del acorazado y detonó debajo de su quilla. La explosión tuvo efectos devastadores, inundando la caldera y las salas de máquinas de Roma y rompiendo dos de sus cuatro ejes de hélice. Esto finalmente redujo su velocidad y se encendió una gran cantidad de fuegos eléctricos.

Solo siete minutos después, otro Fritz X golpeó  a Roma , esta vez detonando en su sala de máquinas delantera y causando que su cargador explotara. La explosión fue tan intensa que mató al capitán de la embarcación, el vicealmirante Carlo Bergamini, ya 1.393 tripulantes. Media hora después del primer bombardeo, Roma se había partido en dos y volcado.

En los días posteriores, los pilotos de la Luftwaffe continuaron desplegando misiles Fritz X , hundiendo el crucero británico HMS Spartan (95) y el destructor Janus (F53), así como varios barcos mercantes en el área. También causaron graves daños al buque de guerra británico HMS Warspite (03) y al crucero Uganda (66), así como a los cruceros ligeros estadounidenses USS Philadelphia (CL-41) y  Savannah (CL-42).

El Fritz X hizo vulnerable a los aviones alemanes

Fritz X. (Crédito de la foto: Alan Wilson / Flickr CC BY-SA 2.0)

Aunque el Fritz X se mostró prometedor en los primeros días, ciertamente tenía sus inconvenientes. Para empezar, el avión bombardero tenía que volar recto y nivelado mientras el misil estaba a bordo. En segundo lugar, tuvieron que desacelerar inmediatamente después del lanzamiento de las bombas, ya que los bombarderos necesitaban una ayuda visual para guiarlos.

Los aviones que transportaban y desplegaban el Fritz X pronto se dieron cuenta de lo vulnerables que se habían vuelto, y los aliados no tardaron mucho en identificarlo y explotarlo.

La defensa más eficaz contra los aviones alemanes que transportaban Fritz X eran los cazas, que les impedían volar lento y recto. Además, los Aliados determinaron que crear humo también era efectivo, ya que los misiles eran menos visibles y, por lo tanto, causaban problemas a los bombarderos a la hora de guiarlos. Los aliados también instalaron rápidamente contramedidas electrónicas para bloquear las señales de radio, causando más problemas.

El plan inicialmente requería la producción de 750 misiles Fritz X por mes, pero entre abril de 1943 y el final del programa en diciembre del año siguiente, solo se habían producido 1.386. De estos, 602 se utilizaron en entrenamiento y pruebas. Además de eso, los misiles no fueron tan precisos como esperaba la Luftwaffe , solo alcanzaron sus objetivos alrededor del 20 por ciento de las veces.

Dicho esto, el Fritz X fue el punto de partida para el futuro desarrollo de misiles controlados por spoilers.



Malvinas: Audio de los pilotos argentinos atacando a la flota