Mostrando las entradas con la etiqueta MBT. Mostrar todas las entradas
Mostrando las entradas con la etiqueta MBT. Mostrar todas las entradas

jueves, 28 de noviembre de 2024

MBT: Las ventajas de las orugas de caucho sobre asfalto

Sobre las ventajas de las orugas de caucho para tanques sobre asfalto

Edward Perov || Revista Militar





No es ningún secreto que en la construcción de tanques occidentales se han utilizado durante muchas décadas orugas con tacos de goma, mientras que los tanques de la escuela soviética en su conjunto no tenían ni tienen este "zapato". No desarrollaremos una polémica sobre qué enfoque es el correcto, pero el hecho es que las propiedades de agarre de las orugas de goma al moverse sobre superficies como el asfalto o el hormigón son mucho mejores que las de las de metal.

Hablaremos de esto con más detalle en este artículo, basándonos en pruebas realizadas en la Unión Soviética en la década de 1970.




Introducción

En primer lugar, me gustaría responder a una pregunta que probablemente tengan muchos lectores: ¿por qué estudiar y, en general, prestar atención a los indicadores de adherencia de las orugas cuando se mueven sobre superficies duras como el asfalto o el mismo hormigón?

Sí, a primera vista puede parecer que no hay absolutamente ninguna necesidad, porque un parámetro mucho más serio es la capacidad de todo terreno del tanque, que afecta directamente a su efectividad de combate en las condiciones más difíciles. Sin embargo, esto es solo a primera vista: en realidad, los tanques no solo amasan barro o conducen sobre suelos con poca capacidad de carga, sino que también marchan sobre carreteras y autopistas asfaltadas y realizan operaciones de combate en áreas pobladas donde existen estas mismas carreteras.

Y aquí es donde sale a la luz un matiz, que es el siguiente: debido a la baja fuerza de fricción "superficie-metal" y al funcionamiento ineficaz de las orejetas de metal de la oruga (no penetran profundamente en la superficie, o no penetran en absoluto), a altas velocidades, el coloso de varias toneladas pierde significativamente la capacidad de control, y es bueno si termina con un pequeño derrape y no con una deriva pronunciada.

La situación se agrava aún más si el asfalto o el hormigón antes mencionados están muy mojados por la lluvia. No hace falta ir muy lejos para encontrar ejemplos: basta recordar el incidente que ocurrió hace unos años en Bielorrusia durante un ensayo de un desfile, cuando un "setenta y dos" patinó con tanta fuerza en un terreno llano que derribó una farola.



Todo esto limita seriamente la velocidad de movimiento de los tanques, tanto en columnas como individualmente, y también aumenta el riesgo de situaciones de emergencia. Por lo tanto, el problema no es tan efímero, como lo confirmaron los propios autores del estudio:

Garantizar la controlabilidad de los tanques cuando se desplazan a altas velocidades, especialmente en carreteras con superficies duras, es un problema muy urgente. 

Es importante entender que las propiedades de agarre de las orugas de goma de los distintos tanques pueden variar significativamente debido a las características de diseño. Por lo tanto, los resultados de la investigación que se presentan a continuación solo ofrecen una imagen general, pero muy clara: con la presencia de orejetas de goma, el agarre mejora drásticamente.

Experimento

En los experimentos se tuvieron en cuenta los coeficientes de adherencia conocidos de las orugas soviéticas sobre diferentes superficies, pero surgieron problemas con las orugas de goma, ya que los autores de los modelos occidentales modernos no tenían estos productos a su disposición. La situación actual se resolvió de forma bastante sencilla tomando orugas de un tanque Sherman con orejetas cortadas en una fresadora, como las del tanque M60A1.


El coeficiente de adherencia de estas orugas se midió de la siguiente manera: se tomaron acoplamientos de tres a cinco orugas, sobre las cuales se instaló una cesta especial, en la que se colocó una carga para impartir la presión específica necesaria. Toda esta estructura fue remolcada sobre asfalto, hormigón y otras superficies mediante un tractor MAZ-537 con transmisión hidromecánica, lo que garantiza una aplicación suave de las fuerzas de tracción. La propia fuerza de tracción y la velocidad de movimiento se registraron mediante un osciloscopio.

¿Cuáles son los resultados?

En primer lugar, es necesario observar la dependencia de los coeficientes de adherencia (cuanto más altos, mejor) de la velocidad de deslizamiento de las orugas de metal y de goma. Como se puede ver en la siguiente figura, cuando las orugas comienzan a moverse y la velocidad de deslizamiento aumenta a 0,05 metros por segundo, los coeficientes aumentan bruscamente. Cuando la velocidad de deslizamiento alcanza 0,5-0,8 m/s, los coeficientes se estabilizan.


Figura 1. Dependencia del coeficiente de adherencia ϕсц\phi_{сц} de orugas metálicas (____) y recubiertas de goma (----) respecto a la velocidad de deslizamiento vскv_{ск} en diferentes condiciones del terreno:

  1. Hormigón y asfalto;
  2. Camino de tierra;
  3. Asfalto;
  4. Hormigón;
  5. Camino helado.

Sin embargo, como se puede observar, el coeficiente de adherencia durante el deslizamiento en todo el rango de velocidades sobre hormigón y asfalto para la oruga de goma es mucho mayor que para la de metal. En caminos de tierra, los coeficientes de las orugas son aproximadamente iguales, y en caminos helados gana la oruga de metal.

También es interesante la dependencia del coeficiente de adherencia de la oruga con el valor de presión específico. Se calculó a una velocidad de deslizamiento de un metro por segundo. En este caso, se tuvo en cuenta la presión tanto en toda el área de la pista como en los tacos de las orugas de metal y de goma.

Figura 2. Dependencia de los coeficientes de adherencia ϕсц\phi_{сц} de las orugas metálicas (____) y recubiertas de goma (----) respecto a la presión específica:

qTq_T - sobre toda el área de la oruga;
qг.мq_{г.м}, qг.оq_{г.о} - para orugas metálicas y recubiertas de goma respectivamente, cuando se apoyan únicamente en los salientes del terreno.


1 – hormigón y asfalto, 2 – camino de tierra, 3 – asfalto, 4 – hormigón, 5 – camino helado

Los resultados obtenidos en este caso son similares a los de la figura anterior: independientemente de la presión específica, las orugas de goma tienen un coeficiente de adherencia más alto sobre asfalto y hormigón que las de metal, perdiendo frente a estas últimas cuando se conduce sobre carreteras heladas.

Los coeficientes de adherencia en sí, en función de la superficie, se resumen en la siguiente tabla. De ello se desprende que las orugas de goma proporcionan valores más altos de este parámetro tanto en dirección longitudinal como transversal cuando se conduce sobre asfalto y hormigón que las de metal.

Coeficientes de adherencia de orugas metálicas y recubiertas de goma



Cabe señalar que las orugas de goma conservan su adherencia sobre asfalto y hormigón mojados, ya que el caucho tiene una propiedad de succión sobre la superficie mojada de la carretera. Pero con carreteras heladas, por supuesto, tienen problemas. Sin embargo, no se puede decir que sean importantes y completamente insolubles.

En primer lugar, incluso con una oruga de metal, el coeficiente de adherencia sobre una carretera helada se reduce a un valor críticamente bajo, aunque es más alto que el de las orugas de goma, en cualquier caso, ambos tipos de orugas hacen que el tanque sea una vaca natural sobre hielo cuando se mueve a alta velocidad.

En segundo lugar, los autores del estudio señalaron que la investigación involucraba orugas con almohadillas de goma (tacos) de una forma no óptima, por lo que no descartaron que el coeficiente de adherencia de las orugas de goma pudiera elevarse hasta los niveles de las de metal.

En tercer lugar, para los tanques existentes, como el Abrams, existen almohadillas especializadas en forma de "botas" de metal en forma de X instaladas en las orugas para circular sobre hielo. Con ellas, el agarre en superficies resbaladizas es probablemente incluso mejor que con las orugas de metal normales.

Conclusiones

Por supuesto, los resultados de los experimentos publicados en este artículo reflejan solo el panorama general. Sin embargo, el hecho es que las orugas de goma proporcionan una tracción mucho mayor sobre asfalto y hormigón que las de metal: casi el doble o incluso más.

Por lo tanto, la manejabilidad de los tanques "calzados" con orugas de este tipo en las superficies mencionadas es mucho mejor, lo que reduce el riesgo de situaciones de emergencia durante el funcionamiento de los vehículos y aumenta su velocidad media de movimiento tanto en marchas en columnas como individualmente, incluso en condiciones de combate.

Fuente:
"Estudio de las propiedades de adhesión de las orugas de metal y caucho" Yu.A. Konev, VD Timofeev, VA Chobitok


 

viernes, 15 de noviembre de 2024

MBT: El liderazgo del K2 Black Panther


K2 Black Panther: el MBT líder mundial de Corea del Sur


ezoico ezoico || TANK Historia


El Leopard 2, el M1A2 Abrams, el Challenger 2 y el T-14 Armata a menudo se consideran los mejores en las listas actuales de los principales tanques de batalla actuales. Sin embargo, el K2 Black Panther de Corea del Sur ciertamente merece un lugar cerca de la cima de estas listas.

Diseñado casi en su totalidad internamente por Corea del Sur, el K2 es uno de los tanques de batalla principales (MBT) más nuevos y avanzados que existen en la actualidad.

En una intensa fase de desarrollo, Corea del Sur investigó e incorporó las mejores características de diseños extranjeros en una única máquina de alto rendimiento.

 
El K2 suele quedar fuera de las discusiones sobre MBT, a pesar de ser uno de los más capaces.
 

El K2 Black Panther supera incluso al M1A2 Abrams, pero a pesar de su gran potencia, es más de 10 toneladas más ligero que su homólogo estadounidense.

La producción del K2 comenzó en 2008 y el tanque entró en servicio en 2014. Hoy en día, es el vehículo blindado más formidable de Corea del Sur.
 

Historia

Como ocurre con muchos vehículos, la historia del K2 comenzó mucho antes de su desarrollo.

Después de la Guerra de Corea, la península de Corea quedó dividida en dos; Corea del Norte y Corea del Sur.

Los dos vecinos firmaron un armisticio en 1953 que puso fin a los combates, pero las tensiones entre los países siguieron siendo altas. Tanto Corea del Norte como Corea del Sur invirtieron mucho en sus ejércitos para enfrentarse entre sí en caso de que estallara nuevamente la guerra.

A finales de la década de 1970, Corea del Norte poseía un gran número de potentes MBT de diseño soviético. Mientras tanto, Corea del Sur tenía un número menor de tanques inferiores como M47 y M48 Patton proporcionados por Estados Unidos.
 
El T-62 con su cañón de ánima lisa de 115 mm asustaba especialmente a los surcoreanos.

Temiendo constantemente un ataque norcoreano, Corea del Sur intentó obtener diseños extranjeros más nuevos como el M60 y el Leopard 1.

Esto no funcionó, por lo que decidieron construir un tanque ellos mismos.

Pero rápidamente chocaron contra un muro: Corea del Sur nunca antes había diseñado un MBT y carecía de la infraestructura y los conocimientos técnicos para hacerlo por su cuenta. Por lo tanto, tuvieron que depender de una importante ayuda extranjera.

Planearon seleccionar un diseño extranjero y construirlo en el país bajo licencia. Se decidieron por el XM1, el prototipo del M1 Abrams, como base para su nuevo tanque. Después de inspeccionar el diseño, Corea del Sur realizó muchas modificaciones que ajustaron el tanque a sus necesidades particulares.

El tanque resultante se llamó K1 y entró en servicio en 1987. Externamente se parecía al Abrams, incluso las tropas estadounidenses en el país lo apodaron el "bebé Abrams".

 
El K1 tiene un parecido sorprendente con el Abrams.
Imagen de la Agencia de Medios de Defensa MND de la República de Corea CC BY-SA 2.0.

Llevaba el mismo cañón de 105 mm que los primeros Abrams y era mucho más capaz que cualquier cosa que Corea del Norte tuviera en ese momento.

Aún así, alrededor del 80 por ciento del tanque era extranjero, lo que impidió que Corea del Sur lo exportara a otras naciones.

En 1995, la Agencia para el Desarrollo de la Defensa (ADD) de Corea del Sur inició un proyecto para diseñar y construir un nuevo tanque íntegramente internamente. Mejoraría el todavía potente K1 y, como era un diseño local, Corea del Sur sería libre de exportarlo.

Corea del Sur pasó los siguientes dos años estableciendo lo que quería y cómo lo conseguiría. Este tanque se llamaría K2.
 
Vehículo piloto XK2. Imagen de la Administración del Programa de Adquisiciones de Defensa CC BY-SA 4.0.

Investigaron e inspeccionaron numerosos sistemas y características de los mejores tanques del mundo, generando ideas y tecnologías que luego podrían incorporar a su nuevo diseño.

Se sugirió una torreta no tripulada para el K2, al igual que un cañón de ánima lisa de 140 mm de Rheinmetall, pero al final los diseñadores se decidieron por una torreta tripulada convencional y una tripulación de tres personas.

Se construyeron cinco demostradores XK2 a mediados de la década de 2000 y el tipo fue aprobado para su aceptación en el ejército.

En su interior había un cañón de ánima lisa L/55 de 120 mm desarrollado por ADD y Hyundai Wia. Este cañón es incluso más largo que el cañón L/44 de 120 mm del Abrams y puede disparar rondas estándar de 120 mm de la OTAN.

 
Equipo de pruebas de potencia de fuego XK2.
Imagen de la Administración del Programa de Adquisiciones de Defensa CC BY-SA 2,0 kr.
 
El arma se carga mediante un cargador automático, similar al utilizado en el MBT Leclerc de Francia.

La producción en masa comenzó en 2013 y el K2 entró en servicio con el ejército de Corea del Sur en 2014.

La Pantera Negra K2

En comparación con otros MBT contemporáneos como el Challenger 2 y Abrams, que entraron en servicio en los años 1990 y 1980 respectivamente, el K2 Black Panther es un diseño muy reciente.

Como MBT de cuarta generación, el K2 está repleto de sistemas y tecnologías de vanguardia.

Está protegido por acero convencional, armadura compuesta clasificada, armadura reactiva explosiva y sistemas de protección activa.

Para aproximadamente los primeros 100 vehículos construidos, se utilizó el motor diésel alemán MTU MT-883 ka501 V12 de 1.500 hp debido a problemas de suministro con el motor planeado por Corea del Sur. Sin embargo, estos problemas de suministro se rectificaron y los siguientes tanques se produjeron con unidades de energía de igual potencia fabricadas localmente.

 
El motor de 1.500 hp del K2, combinado con su peso relativamente liviano, le otorga una relación potencia-peso de 25 hp por tonelada.

 

El vehículo pesa 61 toneladas.

Una de sus características más famosas es su avanzado sistema de suspensión conocido como Unidad de suspensión en el brazo (ISU). Cada bogie se puede controlar de forma independiente al resto.

El K2 Black Panther puede mejorar el manejo todoterreno ajustando cada bogie para que se adapte mejor al terreno actual. También le da al tanque la capacidad de "sentarse", "arrodillarse" e "inclinarse" dejando caer la suspensión en la parte trasera, delantera o lateral.

Esto aumenta significativamente la depresión y elevación del cañón utilizable del tanque.

 
Un K2 “arrodillado” con suspensión bajada delante y elevada detrás.
Imagen de Gasiseda CC BY-SA 4.0


Además, el tanque está equipado con un sistema dinámico de tensión de orugas que mantiene continuamente la tensión de las orugas, incluso durante maniobras duras.

Además de su excelente movilidad, el K2 Black Panther también puede atravesar ríos de 4,1 metros de profundidad, a pesar de su altura de 2,4 metros.

La velocidad máxima es de 70 km/h (43 mph) en carretera y de 50 km/h (31 mph) fuera de carretera.

Sin embargo, la característica más impresionante del tanque es su sofisticado y altamente capaz sistema de control de tiro. El cañón de ánima lisa CN08 de 120 mm es uno de los MBT más capaces de la actualidad y puede disparar a un ritmo rápido gracias a su mecanismo de carga automática.

 
El cañón de 120 mm del K2 puede lanzar un proyectil de 5 kg a 1.760 m/s. Esta bala puede perforar 700 mm de acero.
Imagen de Gasiseda CC BY-SA 4.0
 

Un sistema de radar de alta frecuencia está montado en la parte delantera de la torreta y escanea el área que se encuentra delante. Utilizando este y otros sensores como cámaras termográficas y telémetros láser, el sistema de control de incendios puede fijar objetivos a más de 6 millas de distancia, incluidos aviones.

El K2 Black Panther también puede retrasar automáticamente un disparo momentáneamente si el artillero dispara cuando el tanque golpea un bache en el suelo. Una vez que el arma haya regresado sobre el objetivo, disparará.

Los sensores monitorean los alrededores del tanque y vigilan el fuego entrante. Si se detecta esto, la torreta girará automática y rápidamente hacia la amenaza.

También es probable que el sistema de control de incendios tenga la capacidad de detectar, seleccionar y disparar a objetivos sin la intervención de un ser humano. Esto se puede lograr mediante el software del tanque que analiza los datos recibidos de otros activos amigos en el campo.

 
El K2 tiene un excelente conocimiento de la situación gracias a su conjunto de sensores.
Imagen de Gasiseda CC BY-SA 4.0.
 

Desde su posición, el comandante puede anular completamente al artillero y tomar el control de la torreta y disparar.

Increíblemente, hay rumores de que esto va aún más allá y que, en teoría, el vehículo puede ser manejado por un solo miembro de la tripulación en situaciones de emergencia.

Conclusión

No hay duda de que el K2 Black Panther es uno de los mejores tanques del mundo en este momento (al menos en métricas generales). Incluso se puede argumentar con razón que es el principal MBT del planeta en este momento.

El tanque ya ha obtenido un gran éxito de exportación: Polonia firmó recientemente un acuerdo multimillonario con Corea del Sur para recibir y fabricar localmente hasta 1.000 tanques K2 Black Panther en los próximos años.

Puede que esté construido para un país relativamente pequeño con un ejército eclipsado, pero el K2 puede competir con los mejores y ganar.





jueves, 5 de septiembre de 2024

MBT: El renacimiento del tanque alemán

El renacimiento del tanque alemán



Weapons and Warfare




 
En cierto sentido, Alemania después de la Segunda Guerra Mundial era un lugar aún más desolado que en 1919. Dividida en dos, con la Unión Soviética ocupando la parte oriental del país y los Aliados el resto, se estaba acercando. aceptar una nueva identidad y recuperarse de la pérdida de la guerra más devastadora en la historia de la humanidad. La importancia de la República Federal Alemana en el oeste como amortiguador contra el Telón de Acero no pasó desapercibida para las potencias de la OTAN, y a finales de 1955 se creó el Ejército de Alemania Occidental, en gran parte equipado por los Estados Unidos, que enviaron el primer M47. y luego tanques M48. Ese mismo año, West, que en ese momento dependía de los tanques estadounidenses, trazó planes generales para desarrollar conjuntamente un tanque de batalla principal de la clase de 30 toneladas, con énfasis en la movilidad, más que en la protección. La empresa pronto fue abandonada y las dos naciones tomaron caminos separados. En Alemania Occidental, los fabricantes apropiados con experiencia en la construcción de tanques durante el cuarto de siglo anterior se agruparon en dos consorcios y desarrollaron diseños competitivos, completando vehículos prototipo en 1960. El "Grupo B" pronto se retiró, en gran parte porque su producto era más avanzado y, por lo tanto, tendría tardó mucho más en entrar en producción. Esta acción dejó el campo libre para el consorcio liderado por Porsche, que produjo un total de nada menos que 26 prototipos y 50 modelos de preproducción de su nuevo tanque en los tres años siguientes. Luego se entregó la producción a Krauss-Maffei en Múnich y se concedió la licencia para construir el tanque para el ejército italiano a OTO Melara de La Spezia. Los primeros Leopard, como se conoció oficialmente al nuevo tanque, se lanzaron en septiembre de 1965. Durante la década siguiente, se completaron más de 4200 MBT Leopard, junto con casi 1500 chasis más que se utilizaron en ARV, vehículos blindados de ingeniería y AVLB, así como como en el tanque antiaéreo Gepard. El Leopard alemán pasó por una serie de evoluciones durante este período y los Leopards se vendieron a diversos socios de la OTAN, así como a Australia.




El Leopard alemán


El Leopard 1 era bastante más sustancial de lo que había previsto el concepto original, su peso listo para el combate ascendía a 40 toneladas a pesar de que el blindaje primario del tanque tenía sólo 70 mm (2,75 pulgadas) de espesor en el glacis y 60 mm (2,4 pulgadas) de espesor en el frente de la torreta. y lados. El casco del Leopard l era de construcción soldada, mientras que su torreta, de Rheinmetall, estaba fundida como una sola pieza. El tren de rodaje se basaba en siete ruedas dobles de tamaño mediano, con sus ejes desplazados para dar cabida a las palancas que las conectaban a las barras de torsión de las que estaban suspendidas. Había cuatro rodillos de retorno y las ruedas dentadas traseras eran accionadas a través de una caja de cambios con convertidor de par W mediante un motor multicombustible de 10 cilindros y 830 CV de Mercedes-Benz. El motor le daba al tanque una velocidad máxima de 65 km/h (40 mph), y todo el paquete de motor/transmisión fue diseñado para ser reemplazable en 30 minutos, incluso en el campo, con el equipo adecuado. El armamento principal consistía en el cañón estriado británico L7A3 de 105 mm, que sorprendentemente no estaba ni estabilizado ni controlado con precisión en los Leopard originales, aunque a partir de la variante Leopard 1A1 se proporcionó estabilización en ambos ejes y una computadora de control de fuego. El tanque tenía ametralladoras coaxiales y AA, en ambos casos MG3 de 7,62 mm. La carga de munición básica era de 60 cartuchos para el arma principal (tres en la torreta, 57 en el casco) y 5.500 cartuchos para las ametralladoras, siendo la proporción de cartuchos de diferentes tipos para el arma principal una cuestión de decisión local. Los sistemas NBC y de extinción de incendios estaban instalados de serie, y un snorkel que se acoplaba a la escotilla del comandante estaba disponible para operaciones de vadeo profundo hasta una profundidad máxima de 4 m (13 pies). Cuando se empezó a utilizar el snorkel, las aberturas del tanque, en particular el anillo de la torreta, se sellaron rápidamente mediante anillos de goma inflables.

La ruta de actualización del Leopard l siguió una fórmula típica. El Leopard 1A1 obtuvo no sólo el sistema de estabilización y la computadora de control de fuego, sino también una funda térmica para el tubo del cañón, orugas de nuevo diseño, faldones de goma reforzados y modificaciones en las escotillas y el equipo de vadeo. El Leopard 1A2 recibió una torreta de acero de mayor especificación, un mejor sistema de protección NBC e intensificadores de imagen para el comandante y el conductor, mientras que el Leopard 1A3 obtuvo una torreta completamente nueva, que tenía blindaje espaciado y un mejor contorno balístico, incluido un mantelete en forma de cuña. en lugar del original bulboso. El Leopard 1A4 también estaba equipado con blindaje espaciado en el frente del casco. El Leopard 1A4 pesaba más de 2 toneladas más que el original, pero no hubo una degradación notable del rendimiento.





El Leopard 2A7+ fue desarrollado y calificado para las nuevas tareas de las Fuerzas Armadas alemanas.


El Leopard 2

Incluso antes de que se completara la evaluación del prototipo Leopard 1, ya se había comenzado a trabajar en el desarrollo de un sucesor, aunque pasó a un segundo plano frente al proyecto conjunto MBT-70 de Alemania Occidental y Estados Unidos. Cuando se canceló en enero de 1970, la atención se centró en el Leopard 2 y, durante los siguientes cinco años, se construyeron 16 prototipos con diferentes especificaciones. Con alrededor de 55 toneladas, el Leopard 2 era considerablemente más pesado que el Leopard 1, pero no mucho más grande. El peso extra sirvió para mejorar el nivel de protección del tanque y alinearlo con el Chieftain británico, que sería claramente el principal rival del Leopard 2 en el mercado de exportación. La naturaleza exacta del blindaje del Leopard 2 se mantuvo en secreto durante algún tiempo y se supuso que era un laminado espaciado. Pero finalmente se supo que se trataba de un blindaje británico Chobham sobre una estructura de acero, lo que explica hasta cierto punto la forma bastante angular del tanque. La otra mejora significativa con respecto al Leopard 1 fue en el armamento principal. Se eligió un cañón de ánima lisa de 120 mm desarrollado por Rheinmetall, debido a que tanto los proyectiles AP de subcalibre estabilizados con aletas como las ojivas HEAT funcionan mejor si no giran alrededor de su eje en vuelo. Los estadounidenses llegarían a la misma conclusión cuando llegó el momento de seleccionar un arma para su nuevo MBT, y lo mismo hicieron los franceses para el reemplazo del AMX-30. Pero los británicos, que también aumentaron el tamaño del armamento principal de sus MBT a 120 mm, mantuvieron la fe en el cañón estriado.

Varios prototipos del Leopard 2 estaban equipados con suspensión hidroneumática, pero al final se optó por un sistema de barra de torsión con amortiguación de fricción para el tanque de producción, siendo el resto del tren de rodaje idéntico al del Leopard 1. Se especificó el motor de combustible, desarrollado originalmente para el MBT-70, y sus 1.500 CV proporcionaban al tanque una velocidad máxima de alrededor de 70 km/h (43 mph), lo que le daba una ligera ventaja en ese aspecto sobre su predecesor. En 1977 se realizó un pedido de 1.800 Leopard 2 para el ejército de Alemania Occidental y los primeros vehículos se entregaron al año siguiente. Holanda también adquirió Leopard 2, al igual que Suecia y también Suiza, donde eran conocidos como Pz 87 y se fabricaban localmente bajo licencia. También parecía probable que España adquiriera una versión mejorada del tanque antes de finales de la década de 1990.


Mejoras del Leopardo

Al igual que el Leopard 1, el Leopard 2 iba a sufrir sucesivas mejoras a medida que se desarrollaban mejoras. En 1995 estuvieron disponibles una serie de mejoras, incluido un nuevo tubo para el cañón principal, blindaje adicional y un sistema de control de fuego mejorado. Pero en ese momento, ya era factible una revisión mucho más importante, que incluía un cañón de ánima lisa de 140 mm con cargador automático. Esta revisión permitiría reducir la tripulación a tres y reducir un poco el tamaño de la torreta, al mismo tiempo que se aumentaría la capacidad de munición y se mejoraría considerablemente la potencia de fuego del tanque. Se puso en marcha un programa de mejora para incorporar esta modificación, pero no se esperaba que los primeros vehículos salieran del mismo hasta finales de la primera década del nuevo siglo. Una propuesta aún más radical pedía la sustitución de la torreta tradicional por una instalación de armas no tripulada y totalmente automática, controlada remotamente por el comandante/artillero que estaría sentado junto al conductor en el casco. Aunque la tecnología para lograrlo ciertamente existía en 1995 (de hecho, durante muchos años se habían controlado remotamente cañones navales de naturaleza muy similar al cañón principal de un MBT), probablemente fue una medida demasiado radical para implementarla antes de 2010, incluso en un prototipo. forma. Pero incluso eso bien podría significar que un Leopard 2 mejorado estará entre los primeros de los que sin duda serán los MBT básicos del primer cuarto del siglo XXI.

domingo, 19 de mayo de 2024

UK: FV4202 – El tanque que llevó al Chieftain

FV4202 – El tanque que llevó a Chieftain

Así que el tema de hoy cubrirá el tanque FV4202 construido por Leyland Motors entre 1955 y 1956. Este tanque, que se hizo famoso gracias a World of Tanks, es bastante incomprendido. Era un banco de pruebas de tecnología para explorar nuevas ideas y conceptos para el próximo tanque británico propuesto, el Chieftain, que entonces se conocía simplemente como tanque de cañón medio.

Como resultado, el FV4202 nunca fue un verdadero tanque, ni nunca estuvo destinado a serlo, sino que fue hecho a medida con algunas piezas nuevas junto con sobras, una especie de vehículo de burbujas y chirridos, simplemente como un medio para probar ideas para otros. tanques.

Entonces, echemos un vistazo a la historia que conduce al FV4202 y algunas de las características que ayudaron en el proceso de diseño del Chieftain.


Gran Bretaña necesita un nuevo tanque

La historia que conduce al FV4202 comienza al final de la Segunda Guerra Mundial, cuando Gran Bretaña comenzó a buscar un nuevo vehículo que se convirtiera en su pilar. Tenía tres vehículos para elegir: el Comet, que si bien era un buen vehículo en tiempos de guerra, mostró su edad y linaje con bastante rapidez en la posguerra, especialmente en comparación con los avances soviéticos y estadounidenses.

El siguiente fue el Centurion, que, irónicamente, el gobierno inicialmente no quería pero que se convertiría en uno de los tanques más exitosos jamás fabricados.


El Centurion fue armado por primera vez con el cañón de 17 libras.
Luego fue reemplazado por el cañón de 84 mm y 20 libras en la variante Mk 3.

Finalmente llegó el tanque universal A45 y más tarde el FV201, que terminó en cantidades limitadas como el Conqueror.

Podría resultar sorprendente entonces que también quisieran un nuevo tanque medio para la década de 1950, a pesar de que Centurion estaba demostrando ser más que capaz. Esto se debió en parte a los memorandos y documentos más antiguos que sugerían que se eliminaría gradualmente, y las fallas del FV201 los dejaron nerviosos.

Además, estaban preocupados por el IS-3 y seguirían así durante años, con una obsesión por derrotarlo y sin centrarse en la amenaza real que era la serie T-54, que los soviéticos estaban ocupados enviando spam por miles.

Prototipo FV201. El FV201 comenzó a desarrollarse en 1944, pero fue cancelado en 1949. El diseño del casco se utilizaría entonces como base para el FV214 Conqueror, pero como la torreta del Conqueror no estaba lista, se utilizó una torreta Centurion en su lugar. Ese vehículo era el FV221 Caernarvon.

Sin embargo, el Reino Unido consideró que el Centurion necesitaría mayor armamento y blindaje para ser más viable en el futuro, pero en ese momento no tenía la capacidad para hacerlo.

Esto se agravó más tarde en 1956 cuando, durante la Revolución Húngara, un T-54 capturado (o T-55A, las fuentes varían) fue conducido a la embajada británica, dejándolo abierto a evaluación durante un día, aunque no se podía acceder a él ni Corte dentro. Los informes demasiado inflados sobre su blindaje pusieron en duda la capacidad de los cañones de 20 libras, poniendo el último clavo en el tanque de armas FV201.

El comienzo del Chieftain

Medium Gun Tank, el proyecto que eventualmente conduciría al Chieftain, había comenzado ya en 1951 y había tomado algún tiempo formularlo. A veces se le conoce como Tanque de armas mediano No. 2, uno de varios esquemas establecidos, y más tarde se lo conoce como Tanque de armas No. 2.

Las primeras ideas se plasmaron en papel en 1952; se trataba de una extraña colección de diseños que cubrían una amplia gama de vehículos. Algunos de estos primeros vehículos también tenían propuesta una torreta hendida. Una torreta hendida, también conocida como torreta bifurcada, es donde se construye la torreta a la izquierda y a la derecha del arma, que se monta entre las dos secciones. Este enfoque puede permitir instalar un arma más grande que el promedio.

Un ejemplo famoso de este tipo de torreta se puede ver en el tanque ligero estadounidense T92.


Los primeros conceptos del Chieftain tenían una torre hendida, como se muestra aquí.
Tenga en cuenta el arma, que divide la torreta en dos.

Estos vehículos, según las especificaciones originales solicitadas, no tendrían que pesar más de 45 toneladas, por lo que hubo que considerar nuevas ideas drásticas.

Tanto el tanque de cañón mediano como un Centurion modificado se diseñaron el 9 de enero de 1952. El Centurion se basó en un Centurion Mk 3 según notas de un grupo de investigación de la FVRDE; este sistema probaría un prototipo de cañón de propulsor líquido de 20 libras. , que todavía sobrevive en Shrivenham.

No se han encontrado imágenes de este vehículo, pero finalmente se utilizó en campos de tiro para probar cómo sobrevivió el interior al quedarse atascado.

El Tanque de Cañón Medio con torreta hendida permanecería más o menos en una etapa de dibujo, mientras que se hizo un modelo de madera de un tanque con un diseño de punta en forma de pica llamado Tanque de Cañón Medio Número 2.

Nuevas ideas

También se discutieron otras consideraciones para los futuros tanques de armas. FVRDE había establecido algunos de estos puntos clave: el nuevo vehículo necesitaría un mantelete interno en lugar de uno externo, así como una posición del conductor reclinada que reduciría la altura del vehículo. Nuevamente, estas ideas se probaron primero en varias piezas Centurion modificadas.

La siguiente etapa fue la elección del arma a utilizar. La idea de las armas de propulsor líquido se abandonó porque no podían obtener mezclas ni resultados consistentes, aunque la idea sigue siendo interesante incluso hoy en día. Las armas más concesionarias tenían calibres de 105 mm a 130 mm, y eran de carga en bolsas, municiones separadas o de carcasa sólida, con sus pros y sus contras. Cada uno se calculó para rondas APDS, HESH y APCBC.

Mientras se consideraba todo esto, en 1954 se había comenzado a trabajar para establecer si el Tanque de Cañón Medio No. 2 podría equiparse con un cañón de 120 mm, con un cañón de disparo rápido cargado en la recámara, como se ve en el informe PC23 de la FVRDE.

Se trataba de un cañón de 120 mm con carga de bolsa y mecanismo de cierre de bloque deslizante con obturación de anillo, una idea de los alemanes. Esto se debía a que los proyectiles sólidos de 120 mm previstos serían demasiado grandes para guardarse en la elegante torreta y, por lo tanto, ocuparían espacio en el casco, aumentando el volumen del vehículo si se debía transportar suficiente munición.

Para probar esta idea, el arma y otras características se basarían en un cañón de 20 libras modificado y se utilizarían en un nuevo banco de pruebas diseñado por Leyland, el FV4202.

El FV4202

Leyland, que había ganado el contrato para fabricar el nuevo tanque de armas mediano, ahora conocido como FV4201 (Chieftain), se puso a trabajar en la construcción de una serie de bancos de pruebas. Con el doloroso recuerdo de las experiencias en tiempos de guerra de construir cosas demasiado rápido sin las pruebas adecuadas aún fuertes, cada idea sería revisada y considerada exhaustivamente.

El FV4202 fue creado para este propósito.


FV4202 de Leyland.
Tenga en cuenta el mantelete interno del arma, un estilo que aparecería más tarde en Chieftain.

Leyland construyó tres cascos. Estos estaban hechos de partes separadas, cada una de las cuales se registraba por peso y tamaño y se catalogaba en un manual.

La mayoría de estas piezas estaban hechas a medida con acero no blindado. Se arrojaron restos de los tanques Centurion, como las ruedas, de las cuales hay 5 pares a cada lado. Las pistas originales también eran de uno de los primeros Centurion.

El arma utilizada era una de 20 libras, con la característica única de ser una variedad de carga en bolsa en lugar de la versión de disparo fijo en servicio. Las partes funcionales del casco utilizaban muchas características automotrices de Centurion, ya que eran las que había en ese momento.


El FV4202 (derecha) junto a un Centurion (izquierda).
El FV4202 utilizó muchas piezas Centurion porque eran fáciles de adquirir.

La idea era simplemente ver si se podía colocar a un tripulante en una posición de conducción reclinada, ya que el vehículo nunca iba a ser puesto en servicio, la idea de crear una configuración completamente nueva no tenía sentido: se hizo para medir el volumen más que cualquier otra cosa.

La torreta en sí estaba hecha de acero sin blindaje con un espesor adecuado del propuesto para el FV4201; esto fue nuevamente para tener en cuenta el peso pero también el volumen de material para ver si tales aspectos eran viables.

El motor del FV4202 era un Rolls Royce Meteorite, que en este caso tenía una potencia de 520 CV a 2.700 rpm, vinculado a una caja de cambios V52 que proporcionaba unos 12,4 CV por tonelada, suficiente para moverse y probar varias funciones.


El FV4202 estaba propulsado por un Rolls-Royce Meteorite.
Este motor era una versión V8 del V12 Meteor, con una cilindrada de 18 litros.

A pesar de que en línea se le conoce como Centurion de 40 toneladas, el nombre no aparece en ningún documento oficial original, solo FV4202. El vehículo pesa 40,8 toneladas a plena carga, 5 toneladas menos de lo que habría pesado el FV4201 propuesto según lo previsto.

Los tres cascos se utilizaron para probar varias ideas, y luego la información de eso volvió al desarrollo del Chieftain.

Después de esto, prácticamente los abandonaron. Uno fue a Bovington y permaneció en relativamente buenas condiciones, otro fue a REME, donde terminó atrapado en el barro durante ejercicios de remolque.


El FV4202 tal como se encuentra hoy en el Centro de Conservación de Vehículos del Museo del Tanque.
Imagen genérica CC BY-SA 4.0.

El tercero es más un misterio.

Surgen dos historias. La primera es que REME lo convirtió en ARV y está en el museo Bordon; esto no es cierto, y el museo actual lo había dicho. Tienen una conversión de Centurión entre otras, pero no ésta.

La segunda historia es que fue a Israel, sin embargo, después de hablar con varias fuentes que están muy familiarizadas con la colección, han afirmado que esto tampoco es cierto, por lo que a dónde fue es un poco misterioso.

jueves, 2 de mayo de 2024

Blindaje: El Tipo 96B chino puede ser penetrado por una ametralladora

Tipo 96B vs T-72B3: Agujeros de ametralladora en tanques chinos

VietnamDefence - La Competencia Internacional de Tanques 2017 que se llevará a cabo en Alabino, Rusia, es una oportunidad para evaluar y comparar los tanques rusos y chinos. Los resultados de la comparación son desfavorables para el tanque chino, ya que puede ser perforado por ametralladoras.

El tanque Tipo 96B no es un tanque de batalla y es muy inferior a los modelos T-72B3 de 2014 y 2016, y mucho menos al avanzado tanque T-90М. El tanque de exportación VT-4 de China tampoco impresionó a los expertos.

En primer lugar, en cuanto a las capacidades del sistema de propulsión, sin un motor fiable, el tanque se convierte en un objetivo inmóvil y se destruye rápida y fácilmente.  

Gracias a la instalación de un motor de máxima potencia (al parecer de hasta 1.200 caballos de fuerza), China ha aumentado significativamente las características cinéticas del Tipo 96B. Sin embargo, a cambio, tienen que pagar el precio de tener una vida útil corta que no necesariamente es suficiente para competir, y un sistema de suministro de aire y refrigeración mucho más complicado. 
Lo interesante es que la renovación del Tipo 96B ha hecho que la parte trasera del tanque Tipo 96B sea ahora un área extremadamente débil. Ahora, incluso el fuego de una ametralladora de gran calibre puede eliminar fácilmente este tanque de la batalla.

La potencia del motor (1.130 caballos de fuerza) de las últimas variantes del T-72B3 es suficiente para competir con éxito con el tanque "torreta" chino. Además, los tanques rusos no tienen problemas con la fiabilidad del motor. La fiabilidad del motor se confirmó no sólo en competiciones de tanques, sino también en pruebas en países con climas cálidos.
Otro ejemplo típico es la compra de tanques chinos por parte de Pakistán. Aunque NORINCO Corporation llama al VT-4 "el mejor tanque", el VT-4 todavía no es un tanque real. La parte paquistaní está decepcionada con la variante de exportación del tanque chino VT-4, por lo que exigió comprar el tanque más avanzado de China. , el Tipo 99A, que sólo se produce para el ejército chino y no se puede exportar. Según los expertos, sólo el Tipo 99A puede competir en igualdad de condiciones con el T-90M ruso.


Fuente: vestnik-rm, 3 de agosto de 2017.