El Bantam (Bofors ANTitAnk Missile) o Robot 53 (Rb 53) fue un misil antitanque guiado por cable sueco desarrollado a finales de 1950. Sirvió con los ejércitos suecos y suizos de 1963 y 1967 respectivamente. Se puede ser desplegada por un solo hombre que lleva un equipo de misiles y de control o desde un vehículo. Se ha instalado en el Volvo L3314 y el Bulldog Scottish Aviation. En el ejército suizo, fue montado en vehículos de ruedas ligeros Steyr- Daimler -Puch Haflinger. Fue utilizado por la Infantería de Marina de la Armada de la República Argentina (IMARA) durante el conflicto de Malvinas.
Montado en Malvinas por la IMARA
Descripción
El misil se realiza en una caja de lanzador rectangular, que está conectado a una caja de control por un cable de 20 metros, lo que permite un grado de separación del operador. El misil puede ser configurado en unos 30 segundos por un solo hombre. El cuadro de transportador/lanzador está apuntando hacia la dirección esperada del enemigo y la caja de control está unido a ella por medio del cable. La caja de control consta de un dispositivo de observación óptica y una palanca de mando, que transmite comandos para el misil a través de dos cables finos que se arrastraban detrás del misil.
El Bantam (Bofors ANti-Tank Missile) o Robot 53 (Rb 53) fue un misil antitanque sueco guiado por cable desarrollado a finales de la década de 1950. Sirvió en los ejércitos sueco y suizo entre 1963 y 1967 respectivamente. Puede ser desplegado por un solo hombre que lleve un misil y equipo de control o desde un vehículo. Se ha instalado en el Volvo L3314 y en el Scottish Aviation Bulldog. En el ejército suizo, se montó en vehículos ligeros de ruedas Steyr-Daimler-Puch Haflinger. De las colecciones del Museo del Ejército Sueco. La foto muestra la caja de lanzamiento del misil. De las colecciones del Museo del Ejército Sueco.
En el lanzamiento, un pequeño giroscopio se hace girar por el disparo de un granulado de pólvora. El misil es propulsado en el aire por un motor de refuerzo (booster), que lleva el misil a su velocidad de vuelo de aproximadamente 85 metros por segundo. Como parte del área de lanzamiento, cuatro alas se despliegan , que comenzarán a girar el misil en vuelo, lo que proporciona un grado de estabilidad. Una vez que el misil ha viajado a unos 30 metros del giroscopio está desbloqueado y se inicia el vuelo controlado por el operador . Una vez que 40 metros de cable se hayan desplegado desde una de las dos bobinas del misil, el motor sustentador se enciende junto con un máximo de cuatro bengalas trazadoras en la parte posterior del misil. A 45 metros de distancia, el motor de refuerzo se agota. Una que los 230 metros de cable han desplegado desde el segundo carrete de hilo, la ojiva de carga hueca del misil está armada.
Los comandos de la palanca de mando se transmiten al misil a lo largo de los cables de arrastre, estos comandos son amplificadas por un circuito de transistor pequeño en el misil y se enrutan para hacer vibrar spoilers en el borde de salida de cuatro alas del misil basado en la dirección de la orden y el orientación de giro-detectada del misil.
Al impactar con un objetivo, una espoleta piezoeléctrico provoca la ojiva de carga hueca, que puede penetrar hasta 500 milímetros de blindaje. Tiene una probabilidad de impacto reivindicado de 95 a 98 % entre los rangos de 800 y 2.000 metros. [1]
El Bantam es muy similar al ATGM Cobra (misil antitanque) y al AT-1 Snapper ruso de primera generación de misiles anti-tanque.
Operadores
Argentina IMARA
Suecia Ejército sueco
Suiza Ejército suizo
Especificaciones
Largo: 0,85 m
Diámetro: 0,11 m
Envergadura: 0,40 m
Peso del proyectil : 7,6 kg
Peso del misil y lanzador de caja: 13 kg
Alcance: 300 a 2000 m
Velocidad: 85 m / s
Guiado: MCLOS por cable
Cabeza de combate : carga 1,14 kg en carga hueca [2]
Liderazgo en la infantería mecanizada: Enfoques en los Ejércitos Holandés, Danés, Sueco, Británico, Francés y Estadounidense
Por Esteban McLaren para FDRA
Las fuerzas de infantería acorazada, también conocidas como infantería mecanizada, juegan un papel crucial en las operaciones militares modernas. Estas unidades son transportadas al campo de batalla en Vehículos Blindados de Transporte de Personal (APC, por sus siglas en inglés) o Vehículos de Combate de Infantería (IFV), lo que les permite moverse rápidamente y proporcionar potencia de fuego y protección durante las operaciones de desembarco. Sin embargo, el liderazgo efectivo se vuelve esencial cuando las tropas desembarcan de sus vehículos para combatir a pie. El proceso de cómo se lleva a cabo el liderazgo una vez que las tropas desembarcan varía entre naciones, reflejando sus respectivas doctrinas, estructuras organizativas y experiencias en la guerra moderna. Este informe analiza cómo los ejércitos holandés, danés, sueco, británico, francés y estadounidense deciden cómo liderar a sus unidades de infantería acorazada después de desembarcar de sus vehículos.
1. Enfoque Holandés: Flexibilidad equilibrada y mando descentralizado
El Ejército Real de los Países Bajos opera bajo el concepto de mando por misión, una doctrina que enfatiza la descentralización (Auftragstaktik), otorgando a los líderes subordinados la libertad de adaptarse a las condiciones cambiantes del campo de batalla. La infantería mecanizada holandesa es transportada en IFVs CV90 y APCs Boxer, que brindan apoyo de fuego y movilidad.
Liderazgo al desembarcar: El liderazgo en la infantería acorazada holandesa es principalmente a nivel de pelotón, pero se otorga flexibilidad a los jefes de escuadra una vez que las tropas desembarcan. El comandante de pelotón retiene la responsabilidad general, coordinando con las tripulaciones de los vehículos y otras unidades, mientras que los jefes de escuadra lideran a sus equipos desembarcados.
Rol del comandante de pelotón: Tras desembarcar, el comandante de pelotón sigue siendo responsable de la misión general y de la coordinación con los vehículos para apoyo de fuego. El mando es descentralizado, y los jefes de escuadra toman decisiones tácticas en respuesta a las amenazas inmediatas.
Autonomía de la escuadra: Se espera que los jefes de escuadra actúen de forma independiente, tomando decisiones basadas en su comprensión de la intención del comandante de pelotón. Esta estructura de mando flexible permite una rápida adaptación durante el combate en espacios reducidos.
Soldados holandeses desembarcando de un CV90
2. Enfoque Danés: Liderazgo de pequeñas unidades y cohesión
El Ejército Danés, con su infantería mecanizada transportada principalmente en APCs Piranha V y M113, pone énfasis en el liderazgo de pequeñas unidades, la cohesión y la comunicación clara. La doctrina militar danesa resalta la cooperación entre las tripulaciones de los vehículos y la infantería una vez que desembarcan.
Liderazgo al desembarcar: Los líderes de la infantería mecanizada danesa se centran en mantener la cohesión de la unidad durante el desembarco. El jefe de escuadra es clave para mantener el control sobre la infantería desembarcada, mientras que el comandante de pelotón supervisa la coordinación entre las escuadras y el apoyo de los vehículos.
Roles de pelotón y escuadra: El líder de pelotón desembarca con la infantería y toma el control directo de la situación táctica a pie, confiando en los jefes de escuadra para mantener el control de sus equipos. Los jefes de escuadra lideran sus elementos desembarcados en estrecha coordinación con el plan general del comandante de pelotón.
Coordinación con los vehículos: Los daneses enfatizan la coordinación continua con el APC o IFV, particularmente para apoyo de fuego y movimiento. El comandante de pelotón trabaja estrechamente con el comandante del vehículo para dirigir la potencia de fuego de los APCs mientras la infantería desembarcada asegura los objetivos.
M113 y Piranha V daneses
3. Enfoque Sueco: Equipos de fuego independientes con fuerte apoyo de vehículos
El Ejército Sueco transporta a su infantería mecanizada en IFVs CV90, que proporcionan tanto potencia de fuego como transporte de tropas. La doctrina militar sueca se centra en tácticas de pequeñas unidades independientes, con equipos de fuego operando de forma autónoma bajo el control general del liderazgo del pelotón.
Liderazgo al desembarcar: La infantería mecanizada sueca enfatiza la independencia de los equipos de fuego, con los líderes de equipo asumiendo el control táctico durante el desembarco. El comandante de pelotón coordina el movimiento y los objetivos, pero delega una gran autoridad a los líderes de equipo.
Rol del comandante de pelotón: Después de desembarcar, el comandante de pelotón permanece conectado con la tripulación del IFV para asegurar un apoyo de fuego coordinado. El comandante supervisa el panorama táctico general, asegurando que los equipos se mantengan alineados con los objetivos de la misión mientras confía en los líderes de equipo para la ejecución táctica.
Autonomía de los equipos de fuego: Los equipos de fuego suecos operan con un alto grado de autonomía, capaces de tomar decisiones tácticas inmediatas en función de la intención de la misión. Esta independencia permite flexibilidad y toma de decisiones rápidas en situaciones dinámicas.
Tropas mecanizadas suecas
4. Enfoque Británico: Cohesión y liderazgo de pelotón
El Ejército Británico, que utiliza IFVs Warrior y APCs Bulldog, adopta un enfoque centralizado pero flexible para el liderazgo en sus unidades de infantería acorazada. La doctrina británica enfatiza acciones cohesivas a nivel de pelotón con estructuras de mando claras.
Liderazgo al desembarcar: El Ejército Británico destaca el rol del comandante de pelotón, quien lidera la operación de desembarco, coordinando con las tripulaciones de los vehículos para apoyo de fuego. Las órdenes del comandante de pelotón son ejecutadas por los comandantes de sección, que lideran los equipos de fuego individuales.
Rol de los comandantes de sección: Una vez desembarcados, el comandante de sección lidera la infantería a nivel táctico, ejecutando las órdenes del comandante de pelotón. El enfoque está en mantener una estrecha coordinación entre las secciones y asegurar que la potencia de fuego se dirija donde más se necesita.
Rol del comandante de pelotón: El comandante de pelotón sigue siendo responsable de la ejecución general de la misión, confiando en los comandantes de sección para gestionar sus equipos. El mando sigue siendo centralizado, pero los comandantes de sección tienen flexibilidad para adaptarse a las condiciones de combate inmediatas.
APC FV432 Mk2 Bulldog
5. Enfoque Francés: Mando centralizado con fuerte integración de vehículos
La infantería mecanizada del Ejército Francés, transportada en APCs VBCI y VAB, opera bajo una doctrina que enfatiza la coordinación entre las tropas desembarcadas y sus vehículos. La doctrina francesa valora el papel central del comandante de pelotón en mantener el mando y control sobre las operaciones de desembarco.
Liderazgo al desembarcar: El comandante de pelotón en la infantería mecanizada francesa retiene el control central sobre las tropas desembarcadas, con los líderes de equipo gestionando los elementos individuales. Se pone un gran énfasis en mantener la coordinación entre la infantería desembarcada y el APC para apoyo de fuego.
Rol de los líderes de equipo: Los líderes de equipo ejecutan las órdenes del comandante de pelotón, pero se espera que tomen decisiones tácticas rápidas durante el combate. La doctrina francesa enfatiza el control centralizado, pero permite a los líderes de equipo cierta flexibilidad para la toma de decisiones inmediatas en los enfrentamientos.
Coordinación con los vehículos: Los comandantes de vehículos y el comandante de pelotón mantienen una estrecha comunicación, asegurando que la potencia de fuego del vehículo se utilice de manera efectiva para apoyar las operaciones desembarcadas. La doctrina de infantería mecanizada francesa destaca la importancia de utilizar el vehículo como parte integral de la operación desembarcada.
APC VAB
6. Enfoque Estadounidense: Mando descentralizado y autonomía de los equipos de fuego
El Ejército de los Estados Unidos, que utiliza IFVs Bradley y APCs Stryker, opera con una estructura de mando descentralizada, enfatizando la independencia de los equipos de fuego. La doctrina militar estadounidense pone énfasis en la flexibilidad y la rápida adaptación, con la autoridad de toma de decisiones delegada a las unidades más pequeñas.
Liderazgo al desembarcar: En la infantería mecanizada estadounidense, el liderazgo es descentralizado. Los líderes de escuadra o líderes de equipo de fuego asumen el control de las tropas desembarcadas, mientras que el comandante de pelotón coordina la misión general y proporciona apoyo.
Rol del comandante de pelotón: El comandante de pelotón en el Ejército de los EE.UU. a menudo permanece montado en el APC o IFV, o puede desembarcar según la situación táctica. Mantiene el control de la misión general, confiando en los líderes de escuadra para tomar decisiones tácticas durante los enfrentamientos desembarcados.
Liderazgo del equipo de fuego: La doctrina estadounidense permite una considerable autonomía a nivel de equipo de fuego, con los líderes de equipo tomando decisiones rápidas en situaciones de combate dinámicas. Esta estructura permite una respuesta rápida a las amenazas y maximiza la flexibilidad de la unidad.
Integración con los vehículos: El comandante de pelotón y los comandantes de vehículos trabajan estrechamente para proporcionar apoyo de fuego y movilidad a las tropas desembarcadas. La flexibilidad del enfoque estadounidense asegura que tanto los elementos montados como los desembarcados puedan operar de manera efectiva en coordinación.
Stryker y Bradley, caballos de batalla de la infantería mecanizada americana
Análisis comparativo de los enfoques de liderazgo
Nación
Enfoque de liderazgo
Rol del comandante de pelotón
Rol del líder de escuadrón/sección
Coordinación con vehículos
Países Bajos
Descentralizado, mando por misión
Supervisa la misión general
Decisiones tácticas para equipos desembarcados
Coordinación fuerte para apoyo de fuego
Dinamarca
Liderazgo de pequeñas unidades
Control táctico directo
Mantiene cohesión, se adapta a la misión
Fuerte integración para fuego
Suecia
Equipos de fuego independientes
Coordinación, apoyo de fuego
Alta autonomía en decisiones tácticas
Coordinación sólida con el apoyo de vehículos
Reino Unido
Cohesivo, mando centralizado
Controla la misión general
Ejecuta órdenes con flexibilidad táctica
Comunicación constante para apoyo
Francia
Mando centralizado
Mantiene control estrecho
Ejecuta dentro de los límites establecidos
Integración sólida con vehículos
Estados Unidos
Descentralizado, autonomía de equipos
Supervisión de la misión general
Alta autonomía y toma de decisiones tácticas
Flexibilidad en apoyo y coordinación
Conclusión
El liderazgo de la infantería acorazada una vez desembarcada de los APCs o IFVs varía entre naciones, con cada una adoptando métodos que reflejan sus doctrinas tácticas y necesidades operativas. Los ejércitos de los Países Bajos, Dinamarca y Estados Unidos enfatizan el mando descentralizado, otorgando autonomía a los líderes de escuadra o equipos de fuego. En cambio, los ejércitos de Francia y el Reino Unido mantienen un control más centralizado, con el comandante de pelotón dirigiendo estrechamente las operaciones. Mientras tanto, el enfoque sueco equilibra la independencia a nivel de equipo de fuego con una fuerte integración del apoyo de vehículos.
Cada enfoque refleja una mezcla de experiencias históricas, prioridades estratégicas y la necesidad de adaptarse a entornos de combate complejos. Esta diversidad en los métodos de liderazgo asegura que la infantería acorazada pueda operar de manera efectiva en una variedad de escenarios de combate, desde conflictos de alta intensidad hasta operaciones de mantenimiento de la paz.
El 5 de junio de 1967, al comienzo de la llamada Guerra de los Seis
Días, ocurrió algo de lo que no muchos países han extraído enseñanzas.
El desastre de la Fuerza Aérea Egipcia en 1967
En la mañana de ese día, la Fuerza Aérea Israelí lanzó un ataque devastador contra las bases de la Fuerza Aérea Egipcia en tres oleadas, sorprendiendo a los egipcios con sus aviones aún en tierra. Este ataque, comparable al ataque japonés a Pearl Harbor el 7 de diciembre de 1941, fue uno de los más destructivos en la historia militar. En solo unas horas, Israel logró destruir 13 bases aéreas, 23 radares, y 286 de los 420 aviones de combate de Egipto.
Activos de la Fuerza Aérea Egipcia destruidos en
sus bases el 5 de junio de 1967, al comienzo de la Guerra de los Seis
Días (Foto: Government Press Office - Israel).
Operaciones dispersas: desplegando cazas en carreteras
Para evitar una situación similar a la que enfrentó Egipto en 1967, se desarrollaron las operaciones dispersas, que consisten en operar aviones desde pistas improvisadas en tramos de carreteras. Alemania fue pionera en este tipo de operaciones durante la Segunda Guerra Mundial. Posteriormente, Alemania Occidental continuó entrenándose en estas tácticas durante la Guerra Fría, junto con los aviones de combate estadounidenses estacionados en su territorio. Además, países como Bulgaria, Checoslovaquia, Finlandia, Polonia, Suecia, Suiza y la URSS también se prepararon para llevar a cabo este tipo de operaciones durante la Guerra Fría. El Reino Unido, por su parte, basó su estrategia de dispersión en el uso de cazas Harrier, con capacidad de despegue corto y aterrizaje vertical (STOVL).
Aviones de ataque A-10 Thunderbolt II de la Fuerza Aérea de EE.UU. rodando por la autopista A-29 cerca de Ahlhorn, en Baja Sajonia (Alemania), el 28 de marzo de 1984, durante el ejercicio "Highway 84" (Foto: Departamento de Defensa de EE.UU.).
Actualmente, Alemania mantiene 11 tramos de autopistas activos como pistas de aterrizaje auxiliares en caso de conflicto. La invasión rusa de Ucrania subrayó la importancia de estas operaciones dispersas, después de que la Fuerza Aérea Rusa causara graves daños a la Fuerza Aérea Ucraniana durante su ofensiva aérea del 24 de febrero de 2022. Como se observó en septiembre, la Fuerza Aérea Polaca ha reanudado su entrenamiento en este tipo de operaciones después de 20 años sin practicarlas.
Un caza Saab 37 Viggen de la Fuerza Aérea Sueca (Foto: Försvarsmakten).
La extensa experiencia de Suecia en operaciones dispersas
Aunque Finlandia ha estado entrenando durante años en el uso de sus cazas F/A-18 Hornet en carreteras, probablemente el país europeo mejor preparado para este tipo de operaciones es Suecia. Ya durante la Segunda Guerra Mundial, Suecia comenzó la construcción de varios "Berghangars" (hangares excavados en roca) situados bajo montañas. En la década de 1950, Suecia lanzó el programa Flygbassystem 60 (también conocido como Bas 60), que consistió en la creación de 70 pequeñas bases aéreas distribuidas por todo el país para operar sus cazas en carreteras, en previsión de un posible ataque soviético.
Un caza Saab 37 Viggen sueco operando desde una carretera, junto a un coche Volvo de la Policía sueca. Este caza tenía una deriva abatible que permitía ocultarlo mejor en bosques y guardarlo en los "Berghangars" (hangares de roca) de la Fuerza Aérea Sueca, cuyas entradas tenían poca altura (Foto: Reddit).
En la década de 1970, Suecia comenzó a desarrollar el programa Flygbassystem 90 (Bas 90), que empezó a implementarse en la década de 1980. Este plan tenía como objetivo operar aviones en 200 pistas repartidas por todo el país, incluidos muchos tramos de carreteras. La gran diferencia entre Suecia y muchos otros países es que su industria aeronáutica, Saab, se enfocó en este propósito. Mientras que el Saab 35 Draken (1955) requería una pista de 1.200 metros para despegar, el Saab 37 Viggen (1967) podía hacerlo en pistas de solo 500 metros. Para ponerlo en perspectiva, el caza estadounidense contemporáneo del Viggen, el F-4 Phantom II, necesitaba 1.400 metros para despegar.
Un caza sueco JAS-39C Gripen con bombas guiadas por láser (Foto: Försvarsmakten).
Suecia diseña sus cazas para operaciones dispersas: el caso del Gripen
El diseño de los cazas suecos no solo se enfocó en permitir despegues desde pistas más cortas y menos preparadas, sino también en facilitar su mantenimiento, reducir la necesidad de personal especializado y minimizar los tiempos de repostaje. Estos objetivos culminaron en el desarrollo del Saab JAS-39 Gripen, que puede despegar en tan solo 400 metros, aterrizar en pistas de 500 metros y ser reabastecido y rearmado para un nuevo despegue en solo 10 minutos tras aterrizar. Este proceso requiere únicamente un técnico especializado y cinco mecánicos conscriptos, lo que subraya la eficiencia y adaptabilidad del Gripen para operaciones dispersas.
Un JAS-39C Gripen sueco operando desde una carretera (Imagen: Saab).
Estas características de su fuerza aérea y de sus cazas tienen como resultado que Suecia sea hoy en día el país europeo mejor preparado en caso de sufrir un ataque aéreo ruso,
con cazas Gripen que pueden operar desde bases aéreas pequeñas,
austeras y dispersas por todo el país, y que además pueden aterrizar y
despegar desde carreteras en caso de necesidad, aprovechando la red
viaria civil para ese fin.
Un JAS-39C Gripen en un ejercicio conjunto con
las fuerzas aéreas de Finlandia y Noruega en agosto de 2023 (Foto:
Försvarsmakten).
EE.UU. y la OTAN aprenden de la experiencia sueca en operaciones dispersas
El dominio de Suecia en las operaciones dispersas es tan destacado que en 2022 la Fuerza Aérea de EE.UU. (USAF) manifestó su interés en aprender de la experiencia sueca. El General James B. Hecker, comandante de la USAF en Europa, señaló: "La capacidad de dispersar aeronaves es una de sus especialidades", refiriéndose a la Fuerza Aérea Sueca. Añadió: "Suecia tiene un Empleo de Combate Ágil (ACE) mejor que cualquier otra fuerza aérea en el mundo, y vamos a aprovechar esa experiencia. ¡Es muy emocionante!"
Dos cazas Gripen suecos en el ejercicio Arctic Challenge en junio de 2023 (Foto: Försvarsmakten).
En diciembre de 2023, la Mando Aéreo Aliado (AIRCOM) de la OTAN organizó un simposio sobre el Empleo de Combate Ágil (ACE). Durante esa reunión, el Brigadier General Gilles Juventin, de la Fuerza Aérea Francesa, señaló: "Como una de las cinco prioridades del AIRCOM que contribuyen al poder aéreo de la OTAN, estamos estableciendo un concepto operativo para garantizar que los aliados recuperen su agilidad e interoperabilidad en la forma en que se mantienen, apoyan y operan las aeronaves en todo el espectro de operaciones conjuntas. Esto también significa que debe entrenarse y ejercitarse en tiempos de paz".
Un caza F-16D de la Fuerza Aérea Polaca aterrizando en la carretera provincial 604 entre Robaczewo y Wielbark, en Masuria, Polonia, en septiembre de 2023 durante el ejercicio Route 604 (Foto: Ministerstwo Obrony Narodowej).
Juventin añadió: "Varios aliados y socios de la OTAN ya han llevado a cabo despliegues y ejercicios de ACE. Todos los aliados ahora deberían adoptar el ACE y hacerlo parte integral de la educación, capacitación, planificación, operaciones e inversiones futuras en sus respectivos países; este fue uno de los temas principales durante el simposio".
En este contexto, además de la experiencia adquirida por Alemania, Finlandia y Polonia en operaciones dispersas, dos países de la OTAN, Hungría y la República Checa, compartirán la misma ventaja que Suecia al operar el Gripen. Tanto la Fuerza Aérea Checa como la Fuerza Aérea Húngara operan 12 JAS-39C monoplazas y 2 JAS-39D biplazas cada una, todos ellos alquilados a Suecia. A su vez, la Fuerza Aérea Sueca actualmente tiene en servicio 74 JAS-39C, 24 JAS-39D y 3 JAS-39E, el modelo más reciente del Gripen, que está en proceso de introducción. Hoy, Saab ha publicado un interesante vídeo sobre el Gripen explicando sus ventajas en operaciones dispersas (el vídeo está en sueco, pero puedes activar los subtítulos automáticos en español en la barra inferior del reproductor).
Corbeta clase Visby: barco fantasma de los países bálticos
Por Dorian Archus || Naval Post
foto de saab
La clase Visby es la tercera clase de corbeta de la Armada sueca, después de las clases de Göteburgh y Stockholm. El diseño del barco da prioridad a la baja visibilidad, una pequeña sección transversal de radar y una firma infrarroja. El primer barco de la clase se llama Visby, en honor a la capital de Gotland. La clase ha atraído una gran atención internacional debido a sus características sigilosas.
Historia
Los barcos fueron diseñados por la Administración Sueca de Material de Defensa (FMV) y construidos por Kockums AB. La construcción comenzó en 1996 en el astillero Kalrskrona de Kockums. El
buque líder del Visby (K31) fue botado en junio de 2000 y entregado a
la FMV en junio de 2002 para equiparlo con armas y sistemas de combate. El
segundo, el HMS Helsingborg (K32), fue botado en junio de 2003 y
entregado en abril de 2006. Finalmente, el Harnosand (K33) fue botado en
diciembre de 2004. El HMS Visby y el Harnosand fueron entregados
oficialmente a la FMV en junio de 2006. Los otros cascos son Nykoping
(K34), botado en agosto de 2005 y entregado en septiembre de 2006, y
Karlstad (K35), botado en agosto de 2006. Dos corbetas, HMS Helsingborg y
Harnosand, fueron entregadas a la Armada sueca en diciembre de 2009. La
Armada sueca canceló un opción en un sexto buque (Uddevalla K36).
Diseño
El
Visby fue diseñado para disminuir firmas ópticas e infrarrojas, firmas
acústicas e hidroacústicas sobre el agua, firmas magnéticas y de
potencial eléctrico submarino, firmas de presión, secciones
transversales de radar y señales generadas activamente.
El casco está intercalado entre un núcleo de PVC, fibra de carbono y un laminado de vinilo. El uso de materiales compuestos en cascos de barcos tiene muchas ventajas. La
excelente conductividad y la planitud dan como resultado una señal de
radar baja, mientras que un excelente aislamiento térmico reduce la
firma infrarroja y promueve la supervivencia en caso de incendio. Además, el sándwich compuesto empleado no es magnético, lo que reduce la firma magnética. Los
compuestos también son bastante rígidos en comparación con su peso, y
menos peso equivale a una mayor velocidad máxima y una mejor
maniobrabilidad. El material compuesto pesa aproximadamente un 50% menos que el acero de resistencia comparable.
HSwMS Karlstad disparando el arma principal
El diseño angular de la casa rodante de Visby minimiza su señal de radar. Uno
de los inventores, Jan Nilsson, dijo a BBC News Online: “Podemos lograr
una reducción del 99 por ciento en la sección transversal del radar. Por
supuesto, esto no significa que sea completamente invisible, pero sí
sugiere que hemos reducido su “distancia” de detectabilidad.
Características generales
La
embarcación está equipada con una turbina combinada de diésel o gas
(CODOG) para altas velocidades y dos motores diésel para bajas
velocidades. Los motores están conectados a dos cajas de cambios que accionan dos propulsores de chorro de agua. El diésel sostiene el barco a 15 nudos, mientras que las turbinas se activan cuando tiene que funcionar a 35 nudos o más.
Especificaciones técnicas
Longitud total
72,7 metros
Eslora, máx.
10,4m
Calado a pleno desplazamiento
2,4m
Desplazamiento, totalmente equipado.
650 toneladas
Velocidad del desplazamiento total.
35+ nudos
Complementar
43 personas
Es
un combatiente de superficie flexible, diseñado para una amplia gama de
funciones, que incluyen, entre otras, guerra antisuperficie (ASUW),
guerra antisubmarina (ASW), contramedidas de minas (MCM) y patrulla.
imagen de saab
Misil antibuque RBS 15 (guerra antisuperficie)
Ocho misiles antibuque Saab Bofors Dynamics RBS 15 Mk2 están montados en las corbetas Clase Visby. El RBS15 es un misil antibuque de largo alcance que roza el mar y tiene capacidad de disparar y olvidar. Tiene
una trayectoria tácticamente flexible con numerosos puntos de
referencia y elevaciones para ocultar el lugar de lanzamiento, lo que
aumenta su supervivencia. El
sistema de guía RBS15 se compone de un sistema de navegación GPS/INS,
un altímetro de radar y un buscador de radar activo de fase terminal. Como resultado, los misiles RBS15 son inmunes a las contramedidas.
Además,
varios de ellos pueden programarse para atacar el área objetivo
simultáneamente desde múltiples direcciones, lo que les permite penetrar
las defensas aéreas del barco de manera más efectiva. El RBS 15 Mk2 tiene un alcance de más de 200 kilómetros y emplea localización por radar activo en banda Ku. El misil viaja a una alta velocidad subsónica de Mach 0,9 y está armado con una ojiva de 200 kg.
Representación ASM RBS-15 (Saab)
Guerra antisubmarina
El
Visby está equipado con un conjunto de lanzagranadas propulsados por
cohetes ASW de 127 mm, cargas de profundidad y torpedos. Además,
hay tres tubos lanzatorpedos fijos de 400 mm para los torpedos
autoguiados antisubmarinos Top 45 de Saab Underwater Systems.
Contramedidas contra minas (MCM)
El
Visby transporta OCS del sistema submarino Saab Bofors (vehículos
operados a distancia) para la búsqueda de minas y el OCS Atlas
Elektronik Seafox para la eliminación de minas.
Sistema de señuelo Multi-Ammunition Softkill (MASS)
MASS
ha sido diseñado para proporcionar protección multiespectral contra
misiles guiados en todas las longitudes de onda relevantes del espectro
electromagnético (incluidos radar, infrarrojos y electroópticos).
Conclusión
Las
ventajas de combate de la corbeta clase Visby son una mayor velocidad
con la misma potencia que el barco metálico convencional de las mismas
dimensiones y una maniobrabilidad más excelente y un calado menor, ambas
consideraciones tácticas importantes en aguas litorales. Además,
Visby Class Corvette es un buque de guerra costero ideal con sus
características sigilosas y capacidades ASUW, ASW, MCM y EW. Sin embargo, las limitadas capacidades AAW de estos barcos los hacen vulnerables a las amenazas aéreas. Por
lo tanto, dentro del alcance de las “Mejoras de mediana edad”, se
agregará un sistema de misiles de defensa aérea como nueva capacidad. Además,
el sistema de misiles antibuque RBS15 se actualizará a la última
versión y el sistema de torpedos con el nuevo Saab Lightweight Torpedo.
Explicado: ¡Cómo funciona la propulsión independiente del aire (AIP)!
INTRODUCCIÓN
Desde
que los submarinos se convirtieron en el arma principal de la guerra
naval, los diseñadores se han centrado en hacerlos más silenciosos y
aumentar su resistencia bajo el agua. Los submarinos diésel-eléctricos
tradicionales necesitan salir a la superficie con frecuencia para cargar
sus baterías y tienen una resistencia bajo el agua de sólo unos pocos
días. A medida que mejoró la tecnología de las baterías, la resistencia
de estos submarinos aumentó proporcionalmente. Pero no fue suficiente
para durar más de una semana. La introducción de la propulsión
independiente del aire (AIP) mejoró enormemente la resistencia bajo el
agua de estos submarinos y les dio una clara ventaja.
Esa
es la razón por la que vemos un gran número de armadas haciendo cola
para comprar o construir submarinos con sistemas AIP. La mejor parte es
que la tecnología AIP se puede instalar en submarinos existentes de
generaciones anteriores insertando una nueva sección del casco durante
una modernización. Este artículo abordará el funcionamiento, las
ventajas, las desventajas y la aplicación del AIP en los submarinos
modernos.
Submarinos diésel-eléctricos
Como
su nombre indica, los submarinos diésel-eléctricos funcionan con diésel
y electricidad. Disponen de una amplia red de baterías que se cargan
mediante el generador diésel. Hacen snorkel
, es decir, viajan justo debajo de la superficie del agua con el
periscopio y el tubo de escape del generador diésel por encima de la
superficie del agua. Una vez que cargan sus baterías, se sumergen en el
océano y funcionan silenciosamente con la energía de la batería con los
generadores diésel apagados. Después de funcionar durante unos días bajo
el agua, la batería se agota y estos submarinos tienen que salir a la
superficie nuevamente para recargar sus baterías. Los submarinos
diésel-eléctricos también se conocen como SSK (Sub Surface
Hunter-Killer) por la designación naval de los EE. UU. o popularmente se
les llama diésel. Un submarino diésel-eléctrico emergido
Un submarino diésel-eléctrico para hacer snorkel
¿Por qué necesitamos AIP?
Mientras
están bajo el agua, las baterías a bordo alimentan la hélice y otros
sistemas eléctricos a bordo del submarino. Estas baterías se agotan en
4-5 días y el submarino necesita recargarlas. Esto se hace haciendo snorkel
, lo que los expone a la detección de radares enemigos y los convierte
en un blanco fácil para los activos antisubmarinos hostiles. Aunque los
snorkels modernos están recubiertos con pintura que absorbe los radares y
tienen una forma discreta, siguen siendo detectables por radares de
alta resolución. También hay sensores llamados rastreadores diésel que
pueden detectar las emisiones de escape de los generadores diésel del
submarino mientras se practica snorkel. Un submarino que necesita salir a
la superficie todos los días pierde su elemento sorpresa y aumenta su
vulnerabilidad frente a los activos antisubmarinos hostiles.
Por
lo tanto, necesitamos un sistema que permita a los submarinos
diésel-eléctricos recargar sus baterías sin hacer funcionar sus motores.
Esto les permitirá seguir navegando bajo el agua y conservar el
elemento sorpresa al pasar desapercibidos. El sistema también debería
permitir que los SSK conserven su nivel de ruido extremadamente bajo y
no debería comprometer el rendimiento del submarino. El sistema que
permite todo esto es la Propulsión Independiente del Aire (AIP).
Aunque
los submarinos nucleares ofrecen resistencia y velocidad mucho mejores,
no son adecuados para las aguas litorales poco profundas y la mayoría
de las armadas no pueden permitirse el lujo de construirlos y
mantenerlos porque son muy caros. Además, los submarinos diésel tienen
la ventaja de poder apagar completamente sus motores y permanecer al
acecho, a diferencia de los submarinos nucleares cuyos reactores no se
pueden apagar a voluntad. Esto, combinado con la naturaleza ultra
silenciosa de los submarinos diésel modernos, ha convertido a los
submarinos diésel equipados con AIP en una alternativa muy atractiva
para muchos países. Muchos países están operando submarinos de
propulsión nuclear y diésel por sus respectivas ventajas. Las armadas
que desean operar submarinos no nucleares con carga útil de armas
grandes y de largo alcance ahora tienen la opción de grandes submarinos
diésel equipados con AIP, que brindan la alternativa más cercana a los
submarinos de propulsión nuclear. Algunos ejemplos son la clase Soryu de Japón, el Tipo 216 desarrollado por Alemania y el Shortfin Barracuda de Francia que será operado por Australia.
LABORAL
Antes
de que podamos comprender el funcionamiento de los sistemas AIP,
debemos comprender el significado de algunos términos de ingeniería.
Motor de ciclo cerrado : motor térmico en el que la sustancia de trabajo circula continuamente y no necesita reposición.
Turbina de vapor
: tipo de turbina en la que se utiliza un chorro de vapor de alta
velocidad para hacer girar las palas de la turbina, que a su vez hace
girar el eje. El eje se puede conectar a un alternador para generar
electricidad o a una hélice para mover un barco/submarino.
Fluido de trabajo : Es un gas o fluido presurizado que se utiliza para absorber/transmitir energía en un sistema termodinámico.
Depuración : El proceso de eliminar ciertos gases del escape mediante el uso de productos químicos apropiados en un depurador.
Los tipos de sistemas AIP son
Motores diésel de ciclo cerrado
Turbinas de vapor de ciclo cerrado
Motores de ciclo esterlina
Celdas de combustible
Motores diésel de ciclo cerrado
Esta
tecnología implica almacenar un suministro de oxígeno en el submarino
para hacer funcionar un motor diésel mientras está sumergido. El oxígeno líquido
(LOX) se almacena en tanques a bordo del submarino y se envía al motor
diésel para su combustión. Dado que necesitan simular la concentración
de oxígeno atmosférico para que los motores funcionen de forma segura
sin sufrir daños, el oxígeno se mezcla con un gas inerte (normalmente argón) y luego se envía al motor. Los gases de escape se enfrían y se lavan
para extraer el oxígeno y el argón sobrantes y los gases restantes se
descargan al mar después de mezclarlos con agua de mar. El argón que se
extrae del escape se envía nuevamente al motor diésel después de
mezclarlo con oxígeno.
El principal desafío
de esta tecnología es el almacenamiento seguro de oxígeno líquido a
bordo de los submarinos. Los submarinos soviéticos que utilizaron esta
tecnología durante la década de 1960 descubrieron que eran muy propensos
a sufrir incendios y posteriormente dejaron de utilizarlos. Por lo
tanto, el AIP diésel de ciclo cerrado no es el preferido
para los submarinos modernos, aunque es comparativamente más barato y
simplifica la logística mediante el uso de combustible diésel estándar.
Turbinas de vapor de ciclo cerrado
Las
turbinas de vapor utilizan una fuente de energía para calentar agua y
convertirla en vapor para hacer funcionar la turbina. En los submarinos
de propulsión nuclear, los reactores proporcionan calor para convertir
el agua en vapor. Pero en la propulsión a vapor de ciclo cerrado
convencional, se utiliza una fuente de energía no nuclear para hacer lo
mismo. El MESMA
francés (Module d'Energie Sous-Marine Autonome / Módulo de energía
submarina autónoma) es el único sistema de este tipo disponible y
utiliza etanol y oxígeno como fuentes de energía. La combustión de etanol y oxígeno a alta presión se utiliza para generar vapor . El vapor generado es el fluido de trabajo y se utiliza para hacer funcionar la turbina
. La combustión a alta presión permite expulsar el dióxido de carbono
de escape al mar a cualquier profundidad sin necesidad de utilizar un
compresor.
MESMA AIP
La ventaja de MESMA es su mayor potencia de salida en comparación con las alternativas que permiten mayores velocidades bajo el agua, pero su principal inconveniente es su menor eficiencia
. También se dice que la tasa de consumo de oxígeno es muy alta y estos
sistemas son muy complejos. Estos inconvenientes hacen que varias
armadas opten por alternativas de ciclo de libra esterlina y pilas de
combustible.
Motores de ciclo Sterling
Un motor Sterling es un motor de ciclo cerrado con un fluido de trabajo contenido permanentemente
en el sistema. Se utiliza una fuente de energía para calentar este
fluido de trabajo, que a su vez mueve los pistones y hace funcionar el
motor. El motor está acoplado a un generador, que genera electricidad y
carga la batería. La fuente de energía utilizada aquí suele ser LOX como oxidante y combustible diésel , que se quema para generar calor para el fluido de trabajo. Luego, los gases de escape se lavan y se liberan al agua de mar.
AIP Sterling de Saab Un motor Sterling (derecha) y el módulo de complemento que se adaptará a los subs existentes (izquierda)
La ventaja
de utilizar motores Sterling es la fácil disponibilidad de combustible
diésel y los bajos costes de repostaje en comparación con las pilas de
combustible. También son más silenciosos que MESMA y, por lo tanto, los
prefieren los japoneses para su clase S oryu , Suecia para su clase Gotland y Västergötland y China para su clase Yuan .
El principal inconveniente
es que son relativamente ruidosas en comparación con las pilas de
combustible debido a la presencia de una gran cantidad de piezas
móviles. También son voluminosos en comparación con las pilas de
combustible. La profundidad operativa de un submarino que utiliza
Sterling AIP está limitada a 200 m cuando AIP está activado.
Celdas de combustible
Una pila de combustible es un dispositivo que convierte la energía química en electricidad . Esto se hace usando un combustible y un oxidante. Una pila de combustible típica convierte hidrógeno (combustible) y oxígeno
(oxidante) en electricidad, liberando agua y calor como subproductos.
Esto se realiza mediante una celda electrolítica que consta de dos
electrodos, uno positivo (ánodo) y otro negativo (cátodo), separados por
una barrera electrolítica. La reacción entre el cátodo y el ánodo
produce una corriente eléctrica que se utiliza para cargar las baterías.
Se utiliza un catalizador químico para acelerar las reacciones.
Una pila de combustible PEM de Siemens
Las pilas de combustible de ácido fosfórico (PAFC) y las pilas de combustible de membrana de intercambio de protones (PEMFC) se utilizan actualmente en submarinos. Se dice que Alemania es el
líder mundial en el desarrollo y la implantación de este tipo de AIP, lo
que está respaldado por el gran número de pedidos de exportación que ha
recibido. Francia está desarrollando un AIP de pila de combustible de
nueva generación como sucesor de su MESMA. India es otro país que está
desarrollando un AIP de pila de combustible para integrarlo en sus
submarinos.
Funcionamiento de una pila de combustible PEM
Las pilas de combustible son la tecnología AIP más avanzada y preferida en la actualidad. Esto se debe a las principales ventajas que ofrecen en cuanto a sigilo
y generación de energía. Contribuyen al sigilo del submarino ya que las
pilas de combustible casi no tienen partes móviles, lo que reduce
significativamente la firma acústica del submarino. Las pilas de
combustible pueden alcanzar una eficiencia superior al 80% en
determinadas circunstancias. También se pueden escalar fácilmente a
tamaños grandes o pequeños dependiendo del desplazamiento del submarino.
Esto es más fácil que desarrollar diferentes sistemas para cada clase
de submarino. Las pilas de combustible de hidrógeno también son muy
respetuosas con el medio ambiente, ya que no generan gases de escape, lo
que a su vez elimina la necesidad de contar con maquinaria especial de
eliminación y depuración de gases de escape. El único inconveniente es que son caros y complejos.
VENTAJAS DEL AIP
El
uso de AIP en un submarino diesel-eléctrico aumenta en gran medida su
resistencia bajo el agua, permitiéndoles permanecer sumergidos
continuamente durante semanas sin salir a la superficie. Aunque el
submarino eventualmente necesita salir a la superficie para cargar sus
baterías y su resistencia no está a la par con la de los submarinos de
propulsión nuclear, el gran aumento en la resistencia que ofrece el AIP
les da una ventaja sobre los submarinos diésel-eléctricos que no están
equipados con AIP. Sin embargo, el AIP no ofrece ninguna ventaja más que
una mayor ventaja submarina y no se debe suponer que los submarinos
equipados con AIP siempre derrotarán a sus homólogos que no estén
equipados con AIP.
En abril de 2006, un submarino de la Armada alemana U-32, equipado con una pila de combustible de hidrógeno comprimido AIP con membrana de intercambio de protones (PEM) de Siemens , realizó un viaje submarino ininterrumpido de 2.800 km sin salir a la superficie ni hacer snorkel. Esto contrasta marcadamente con los submarinos que no están equipados con AIP, que pueden cubrir sólo entre 500 y 800 kilómetros
antes de tener que salir a la superficie y recargar sus baterías
haciendo funcionar ruidosos generadores diésel. Comparativamente, ¡un
submarino de propulsión nuclear tiene una resistencia submarina ilimitada!
Unterseeboot U-32 de la Armada Alemana
Nuevamente en 2013 , el U-32 estableció un récord al viajar bajo el agua continuamente durante 18 días
sin salir a la superficie. Comparativamente, un submarino diésel que no
es AIP tiene una resistencia bajo el agua de sólo 4 a 6 días antes de
salir a la superficie. Esto demuestra que los submarinos
diésel-eléctricos equipados con AIP son mucho más capaces que sus
homólogos no equipados con AIP en lo que respecta a la resistencia.
Uso de AIP en todo el mundo
A partir de 2016, los siguientes países han desarrollado sus propios sistemas AIP para instalarlos en submarinos.
Alemania – Pila de combustible
Suecia – Stirling
Japón – Stirling
Francia – MESMA
España – Pila de Combustible
India – Pila de combustible
Rusia – Pila de combustible
República Popular China – Stirling
LIMITACIONES DE AIP
Además
de las pilas de combustible, las tres tecnologías restantes tienen
muchas piezas móviles que generan ruido. Esto no es deseable ya que el
silencio es esencial para todos los submarinos. Entonces, al utilizar
los sistemas Stirling, MESMA y CCD AIP, los submarinos sacrificarán
parte de su sigilo para obtener una resistencia adicional.
Aunque Fuel Cell AIP tiene muchas ventajas, es extremadamente costoso adquirirlas y mantenerlas.
Los submarinos que utilizan AIP necesitan navegar a velocidades inferiores a 10 nudos para lograr una resistencia excepcional de 14 a 18 días, como se anuncia. En comparación, un submarino de propulsión nuclear puede viajar una distancia ilimitada a 30-35 nudos
sin sacrificar la resistencia. Por lo tanto, los submarinos equipados
con AIP no pueden reemplazar a los submarinos nucleares cuando se trata
de aguas azules u operaciones de período prolongado.
ESCENARIO DE COMBATE
La
ventaja que ofrece una mayor resistencia bajo el agua se puede utilizar
para "tender una emboscada" a una flota que se aproxima. En uno de esos
escenarios, un submarino equipado con AIP puede deambular cerca de un
estrecho, esperando que se acerque su objetivo. El submarino funcionará a
velocidades ultra silenciosas de 2 a 4 nudos durante varias semanas y
luego atacará al objetivo cuando aparezca, utilizando sus torpedos.
Aunque un submarino que no esté equipado con AIP puede hacer lo mismo,
su período de espera, que es muy esencial para una emboscada submarina,
es significativamente menor.
En
otro escenario, un submarino equipado con AIP puede vagar cerca del
territorio enemigo durante mucho más tiempo en comparación con un
submarino sin AIP. Así, en esta situación en la que se reúne información
de inteligencia y se realizan misiones de espionaje, AIP da a estos
silenciosos submarinos diésel una ventaja al permitirles merodear
durante semanas sin necesidad de salir a la superficie.
CONCLUSIÓN
Lo
que hay que recordar sobre AIP es que sólo porque un submarino esté
equipado con esa tecnología, no necesariamente la utilizará en cada
despliegue. Durante las patrullas regulares o en territorio amigo, un
submarino equipado con AIP hará snorkel con frecuencia para recargar sus
baterías. Sólo cuando esté desplegado operativamente hará uso del AIP
para aumentar su resistencia bajo el agua. Esto se debe a que la mayoría
de los combustibles, oxidantes y otros consumibles utilizados en AIP
son bastante caros y no sería económico reponerlos mensualmente.
La
capacidad y confiabilidad de las baterías está aumentando debido a las
extensas investigaciones que se están llevando a cabo en ese campo. Las
diversas tecnologías AIP mencionadas también verán mejoras a gran escala
en sus capacidades. Estas dos tecnologías combinadas permitirán que los
submarinos del futuro equipados con AIP permanezcan bajo el agua
durante meses y los conviertan en submarinos pseudonucleares. Esta
tecnología tiene un futuro brillante y veremos armadas más modernas
adoptándola para sus flotas de submarinos diésel-eléctricos.