Nave de ataque rápido [FAC] clase Skjold
Los seis FAC SKJOLD Class fueron construidos por Kvaerner / Umoe Mandal incorporando el sistema de gestión de combate SENIT 2000 como un desarrollo conjunto de DCNS (ahora Naval Group) y Kongsberg.
Una vista de Skjold, Gnist, Storm y Skudd operando juntos mientras ejercitaban en Kristiansund a fines de enero de 2014. Skjold actuó como el barco de pruebas de preproducción para el diseño de la clase entre 1999 y 2003, emprendiendo un largo despliegue en los Estados Unidos. Estados. Ella había regresado recientemente a la flota operativa cuando se tomó esta imagen.
El misil de ataque naval de nueva generación de Kongsberg [NSM] ha sido seleccionado para equipar a los buques de las clases NANSEN y SKJOLD del RNoN como misil antibuque y de ataque terrestre. Los futuros operadores incluyen Polonia, Malasia, Estados Unidos y Alemania.
Con la nueva entrega del HNoMS Skjold el 29 de abril de 2013, la Armada de Noruega finalmente tiene en servicio las seis naves de ataque rápido de su clase Skjold. La Royal Norwegian Navy (RNN) tiene una larga historia de operación de lanchas patrulleras rápidas, que se remonta a 1873 cuando el Rap construido por Thornycroft y propulsado por vapor se puso en marcha en la flota, colocando a la RNN a la vanguardia de los operadores de lanchas patrulleras rápidas. . Desde entonces, las lanchas patrulleras rápidas han sido un elemento integral en la estructura de defensa de Noruega y la RNN ha seguido perfeccionando el diseño de estas embarcaciones a lo largo del tiempo. Sin embargo, nunca antes habían adoptado un diseño tan radical en tantos aspectos como estos últimos barcos.
El prototipo de embarcación de la clase Skjold ahora se ha reconstruido según los estándares de la serie de producción. En particular, ha adquirido el sistema de propulsión COGAG revisado de dos turbinas de gas Pratt & Whitney ST18M y dos Pratt & Whitney STM40 instaladas en los buques construidos en serie en reemplazo de su sistema de propulsión CODOG original. También se ha instalado un conjunto completo de armas y sensores. Re-comisionada en la primavera de 2013, esta vista la muestra participando en el ejercicio de entrenamiento de la OTAN Cold Response 2014.
Génesis: Evolución de la clase Skjold
Los orígenes del programa Skjold se remontan a mediados de la década de 1980, cuando el Norwegian Defense Research Establishment (NDRE) comenzó a estudiar un reemplazo para el Storm y, en última instancia, la nave de ataque rápido clase Hauk, que fueron, respectivamente, encargados en el flota entre 1965 y 1967 y entre 1977 y 1980. El programa emergente para las nuevas unidades, que finalmente se conoció como Proyecto SMP 6081, requería que fueran plataformas de armas estables y de supervivencia capaces de operar a velocidades de 45 nudos en Sea State 3, tener un alcance de al menos 800 millas náuticas a 40 nudos y poder operar fuera de las aguas costeras en una variedad de escenarios, incluidas las operaciones de la OTAN. Además, la oficina del proyecto llevó a cabo una amplia gama de estudios diseñados para reducir la sección transversal del radar (RCS) y las firmas infrarrojas (IR) de los buques.El Comando de Material de la Armada de Noruega (NAVMATCOM), junto con Commander Sea Training (COMSEATRAIN), realizó varios análisis para equilibrar los requisitos operativos con el probable presupuesto disponible. Para el sistema de plataforma, inicialmente se tomaron en consideración no menos de diez conceptos de plataformas diferentes. Habiendo examinado esta amplia gama de opciones de reemplazo, el estudio se redujo posteriormente a una lista corta de tres conceptos, a saber. un monocasco convencional, un catamarán-casco y un catamarán de colchón de aire / barco de efecto superficie (ACC / SES).
Los estudios llevados a cabo por NAVMATCOM indicaron que los niveles de choque experimentados por el SES fueron solo un tercio de los de un monocasco.3 De manera similar, el desplazamiento máximo de los elementos estructurales cuando se sometieron a un choque fue alrededor de la mitad que el de un monocasco comparable. . Estas ventajas fueron un resultado directo de la posición elevada del SES en el agua y su bajo calado. A pesar de esto, hubo algunas dudas en adoptar la nueva forma de casco e incluso se contrató un buque de pasajeros SES para descubrir las limitaciones operativas de un SES en comparación con las clases Storm y Hauk monocasco. Se brindó confianza adicional a través de la experiencia adquirida en el diseño y la construcción de los cazadores de minas y dragaminas de las clases Oksøy y Alta, que demostraron la estabilidad y el área de cubierta grande inherentes a la forma del casco del catamarán SES. En última instancia, la combinación de resistencia mejorada a los golpes y capacidad de supervivencia, mejor comportamiento en el mar, mayor volumen interno y alta relación velocidad-potencia que proporcionó el ACC / SES resultó decisiva en su selección.
En 1994 se definieron todos los requisitos de personal y, en julio de 1995, se emitió una Solicitud de propuestas [RfP]. Finalmente, tres astilleros presentaron ofertas: los astilleros noruegos Umoe Mandal y Mjellem & Karlsen y Lürssen Werft en Alemania. El 30 de agosto de 1996, Umoe Mandal recibió un c. Contrato equivalente a US $ 36 millones para construir una unidad de preproducción, que se llamará Skjold. Tras la aprobación de las especificaciones de construcción por NAVMATCOM, la construcción comenzó en 1997. El prototipo de buque se botó el 22 de septiembre de 1998 y se entregó a la Marina Real de Noruega el 17 de abril de 1999. En esta etapa, no se instalaron armas, sensores ni sistemas de gestión de combate y 46 Posteriormente se proporcionaron toneladas de lastre de arena para simular su peso.
El buque de la pre-serie se sometió a pruebas exhaustivas con especial atención a la velocidad, el mantenimiento del mar, EMI / EMC, firmas y funcionalidad, así como las pruebas de fiabilidad operativa, principalmente en el norte de Noruega durante el otoño y el invierno. También hubo un despliegue de un año en América del Norte en préstamo a la Marina de los EE. UU. Este programa de pruebas inicial tuvo una influencia importante en la conveniencia de proceder con la orden de producción en serie y resultaría en varios cambios en la especificación de producción.
A pesar de las dudas emergentes sobre el valor del programa en el entorno naval posterior a la Guerra Fría, un nuevo libro blanco de defensa aprobado por el parlamento noruego en junio de 2001 preveía la construcción de cinco unidades adicionales. Esta decisión se confirmó posteriormente en octubre de 2003, una vez que se acordaron provisionalmente las condiciones y los precios del programa. Posteriormente, el 28 de noviembre de ese año, la Subdivisión de Inversión de Materiales de la Organización de Logística de Defensa de Noruega (NDLO) otorgó al Consorcio Skjold Prime (SPC) un contrato de 3700 millones de coronas noruegas (550 millones de dólares estadounidenses) para construir y equipar los cinco nuevos barcos, mientras actualizar el prototipo al mismo estándar. El SPC fue una alianza industrial que reunió a tres empresas asociadas para compartir la responsabilidad de la entrega de la plataforma Skjold. Estaba integrado por Umoe Mandal (responsable del diseño detallado, integración de sistemas, construcción, pruebas y soporte logístico integrado); la empresa conjunta Armaris entre la francesa DCN y Thales, ahora fusionada en DCNS (autoridad de diseño de sistemas de combate); y Kongsberg Defense & Aerospace (responsable de entregar e integrar el sistema de combate en cooperación con Armaris). La participación de Umoe Mandal en el programa consistió en aproximadamente NOK2bn; Armaris recibió aproximadamente NOK1bn; mientras que la participación de Kongsberg Defense & Aerospace (KDA) se valoró en NOK750m. La construcción de la primera de las cinco unidades de producción estándar, Storm, comenzó en octubre de 2005
A pesar de nuevos desafíos al valor de la clase y una serie de retrasos en el proyecto, la puesta en servicio de los nuevos barcos en configuración operativa comenzó en septiembre de 2010, y la nueva entrega del Skjold mejorado en abril de 2013 completó el programa. Todas las unidades alcanzarán la capacidad operativa completa a principios de 2015. El plan de la RNN es tener cuatro unidades disponibles en cualquier momento, mientras que dos se someten a mantenimiento y actualizaciones adicionales.
Detalles de diseño: Estructura y furtividad
La característica más distintiva del diseño de la clase Skjold es sin duda su innovadora forma de casco de doble ACC. El casco del catamarán SES de 47,5 m de eslora está fabricado con una construcción sándwich de plástico reforzado con fibra (FRP), que reduce el peso total del barco. Este material es capaz de absorber altos niveles de impacto y, como tal, minimizar el alcance del daño a la estructura del barco, así como el costo de las reparaciones. El FRP también le da al barco tanta flotabilidad en sí mismo que apenas puede hundirse. Además, su uso permite que la mayoría de los tipos de daños, desde un rayón en la superficie del laminado hasta daños importantes en un panel y su estructura subyacente, se reparen rápidamente mediante el uso de técnicas especialmente desarrolladas. Otra característica digna de mención es la provisión de calefacción debajo de la cubierta para evitar la acumulación de hielo en la cubierta. Umoe Mandal obtuvo la licencia para utilizar la técnica del proceso de moldeo por infusión de resina de Seemann Composites (SCRIMP) en la construcción de la clase. Consiste en un proceso de moldeo por transferencia de resina que utiliza un vacío para extraer la resina líquida en una capa seca. Se utiliza para fabricar piezas compuestas repetibles de muy alta calidad con emisiones de COV (compuestos orgánicos volátiles) casi nulas.La furtividad fue una de las principales preocupaciones de la oficina del proyecto desde el inicio del programa. La clase ha sido diseñada para minimizar todas las firmas observables. La forma controlada del barco sobre la línea de flotación es evidente en la ausencia de esquinas de 90º y la inclinación del casco y la superestructura en un ángulo pequeño para desviar el radar. La superestructura exhibe características bajas y elegantes, el equipo de la parte superior está dispuesto para maximizar la ocultación y hay un uso extensivo de revestimientos anecoicos. Las tomas de aire a las turbinas de gas y los ventiladores de los ascensores están cubiertas con una malla absorbente de radar, las ventanas del puente incorporan un material absorbente de radar y todas las escotillas están al ras para reducir sus firmas RCS. Una consideración similar ordenó la cúpula furtiva proporcionada para el cañón Oto Melara de 76 mm / 62. El mástil principal de 9,6 m de altura está construido completamente con fibra de carbono y el material también se utiliza en bridas de vigas y marcos.
La firma infrarroja (IR) se mantiene al mínimo mediante el uso de enfriamiento de agua de mar para los escapes de la turbina de gas; las salidas de agua se conducen al colchón de aire entre los dos cascos ya través de la popa del barco. Del mismo modo, la firma acústica se reduce gracias a los materiales plásticos reforzados con fibra, que proporcionan mejores cualidades de amortiguación del ruido transmitido por la estructura. Además, la propulsión a chorro de agua genera firmas hidroacústicas más bajas. La composición del material en la zona húmeda de los cascos gemelos se ha modificado para producir un acabado "más suave", reduciendo así la fricción hidrodinámica.
Operar en el entorno litoral de fiordos y archipiélagos también ha ayudado a las armadas nórdicas a convertirse en líderes en la aplicación del furtividad visual actual y los colores protectores. Los Skjolds cuentan con un esquema de camuflaje que es el resultado del estudio y la prueba minuciosos de los matices y tonos encontrados en la topografía noruega; Los científicos viajaron por varias áreas y midieron los colores en diferentes épocas del año. El esquema de pintura resultante, que también incorpora altas propiedades de absorción de infrarrojos, reduce en gran medida las firmas electroópticas y visuales de los barcos. Como tal, los Skjolds son difíciles de detectar cuando acechan cerca de la costa y son capaces de enfrentarse a fuerzas hostiles desde corta distancia sin ser detectados. Otro activo importante es la capacidad de la clase para acceder a aguas muy poco profundas que se les niega a otras embarcaciones. Con aproximadamente el 75 por ciento de su desplazamiento "transportado por aire", un calado de tan solo 0,9 m permite que los barcos operen de forma segura en aguas costeras poco profundas sin dejar de mantener excelentes cualidades de navegación.
Una vista detallada de la estructura del puente de Skudd. Se muestra un lanzador de señuelos MASIVO frente a la fachada del puente, con el radar Saab CEROS-200 y el director de control de fuego optrónico montado en el techo del puente. El mástil de fibra de carbono soporta el radar multifunción Thales MRR-3D-NG en la plataforma inferior, con un radar de navegación arriba. La parte superior del mástil alberga el sistema de control de fuego electroóptico Sagem VIGY-20 con un poste para la antena ESM ES-3701 inmediatamente detrás
Sistemas de gestión de plataforma
Los barcos han sido equipados con un avanzado sistema integrado de gestión de plataforma (IMPS) L-3 MAPPS que incluye consolas multifuncionales con monitores en color de alta resolución que muestran páginas gráficas de diseño ergonómico de la maquinaria y los sistemas del barco. Este sistema altamente automatizado incorpora un sistema de puente integrado (IBS) suministrado por Kongsberg; un sistema de control de turbina de gas digital; un sistema integrado de control de daños en batalla (IBDCS); un sistema de monitoreo de equipos (incluida la capacidad de monitoreo de vibraciones); y un sistema de CCTV digital. El diseño modular del sistema general, que combina electrónica ampliamente distribuida pero inteligente e interconectada, permite a la tripulación controlar, monitorear y operar toda la maquinaria de la plataforma, los sistemas eléctricos y de emergencia desde varias ubicaciones a bordo.
El puente estilo cabina, con un IBS marítimo de Kongsberg, proporciona al piloto y al navegador un control total sobre las consolas de visualización del puente. Incorpora un piloto automático K-Bridge, un registrador de datos de viaje, un sistema de identificación automática Kongsberg Seatex AIS 100, un registro electromagnético AGI, una estación meteorológica, un sistema de navegación inercial Sagem 40, un giroscopio de fibra óptica Sperry Marine NAVIGAT 2100 / SR 2100 brújula, un receptor GPS / PPS Trimble Navstar, JRC NAVTEX, una ecosonda Skipper GDS 101 y un dispositivo de orientación óptica Brudeseth. Las consolas del puente muestran datos de cartas de un sistema de información y visualización de cartas electrónicas (ECDIS), datos de radar y electroópticos (EO), así como la funcionalidad del sistema de armas.
El control de daños es un tema importante, siendo el fuego una preocupación principal. La RNN aprendió muchas lecciones de un incendio catastrófico a bordo del cazador de minas Orkla de la clase Oksøy en noviembre de 2002 y muchas de ellas se han incorporado al diseño de la clase Skjold. El barco está dividido en seis secciones estancas al gas y al agua y cuenta con dos salas de máquinas, una en cada casco. El barco puede continuar operando con una sala de máquinas fuera de servicio. Ambos están encapsulados con material aislante retardante de fuego e incorporan sistemas de extinción de incendios Halotron y Hi-Fog con agua nebulizada. Hay una estación de control de daños primaria y secundaria, las cuales pueden acceder al IBDCS incorporado en el L-3 MAPPS IPMS. Esto proporciona una descripción general instantánea de todos los aspectos del estado del barco y brinda la oportunidad de reaccionar en un marco de tiempo muy ajustado.
La clase Skjold está equipada con salas de control de maquinaria primarias y secundarias, que también actúan como estaciones de control de daños del barco. Proporcionan acceso al sistema de gestión de plataforma integrado L-3 MAPPS altamente automatizado, que cuenta con varias consolas multifunción y pantallas a color de alta resolución, ambas en la imagen. Estos permiten a la pequeña tripulación operar y monitorear todo el equipo del barco.
Propulsión
La clase Skjold fue diseñada originalmente para un sistema de propulsión combinado diesel o gas (CODOG). Sin embargo, la RNN decidió cambiar esto a una configuración de turbina combinada de gas y gas (COGAG) con dos turbinas de gas Pratt & Whitney ST18M y dos Pratt & Whitney ST40M que accionan dos chorros de agua Kamewa 80S2. Cada casco tiene un tren de propulsión que incorpora dos turbinas de gas, un chorro de agua y una caja de cambios reductora. La adaptación de los motores de avión ST18 y ST40 para su uso en un entorno marino y las complejidades del diseño COGAG asociado resultó ser un proceso difícil, pero se justificó por el mayor rendimiento y la mejor economía de combustible ofrecidos en todo el espectro de diferentes velocidades y perfiles operativos. Los barcos tienen un alcance de 800 millas náuticas a 40 nudos y una autonomía de alrededor de ocho días. La razón para seleccionar los chorros de agua como sistema principal de propulsión se debió a la combinación de sus propiedades acústicas favorables, requisitos de tiro bajo y excelentes capacidades de maniobra.El funcionamiento del colchón de aire de efecto de superficie está en manos de un sistema de estabilización proporcionado por VT Maritime Dynamics. Esto incluye un sistema de control de suspensión que regula la presión del colchón de aire entre los dos cascos que es creado por un par de ventiladores de elevación de 800kW impulsados por dos motores diesel MTU 12V 183 TE92 en la proa. Los sellos de goma flexible tipo "dedo" en la proa y un sello de "bolsa" en la popa evitan que el aire se escape del cojín formado entre los dos cascos laterales. Las válvulas de ventilación y un sistema de gestión de sellos en la popa, combinados con una entrada de geometría variable a los ventiladores de elevación, controlan el flujo de aire y la presión del amortiguador, mejorando la navegación del barco al minimizar las aceleraciones de cabeceo y levantamiento. La capacidad de manipular el colchón de aire, combinada con la propulsión a chorro de agua, hace que el Skjolds sea fácil de manejar y apto para navegar. Existe la opción de elegir entre velocidad y comodidad, o un compromiso. La clase puede mantener excelentes cualidades de navegación en el mar a 45 nudos en el estado de la mar 3, así como alcanzar los 60 nudos en el estado de la mar 1. La instalación de una plataforma de reabastecimiento en el mar (RAS) se aprobó tras la conclusión de una revisión de diseño a mediados de 2012 , ofreciendo la perspectiva de una mayor resistencia.
Sistema de gestión de combate
La clase Skjold está equipada con un sistema de gestión de combate (CMS) SENIT 2000 y consolas multifunción KD2000 asociadas. Es un derivado del sistema SENIT 8 instalado a bordo del portaaviones francés Charles de Gaulle. Sin embargo, el SENIT 2000 CMS está diseñado específicamente para la guerra costera, con énfasis en armas antisuperficie, detección pasiva, enlaces de datos tácticos y respuesta rápida a amenazas aéreas "emergentes".Desarrollado conjuntamente por DCNS y Kongsberg, SENIT 2000 migra la funcionalidad existente a una nueva arquitectura abierta que se basa en procesadores PowerPC y el sistema operativo Linux. Proporciona a los barcos una capacidad de procesamiento comparable a la de una fragata. El CMS incorpora cinco consolas que cuentan con una nueva generación de pantallas planas LCD completamente multifuncionales. Se afirma que esta es la primera aplicación de este tipo de esta tecnología en el centro de información de combate de un buque de guerra.
SENIT 2000 realiza todas las funciones habituales de gestión de combate, incluida la operación de armas, sensores, enlaces de datos y equipos de navegación. Hace uso de un extenso sistema de apoyo a la toma de decisiones, capaz de planificar y ejecutar misiones, y de mantener bases de datos de inteligencia, cartografía, medidas de apoyo electrónico (ESM) y electroópticas (EO). El sistema también incluye amplias instalaciones de grabación e informes en tiempo real, y proporciona simulación y funcionalidad integrales a bordo para capacitación de un solo operador, de múltiples operadores, de comando y de escuadrón. También hay una sexta consola adicional que se ha proporcionado para la instalación de un sistema de mando y control noruego específico.
Efectores
Aunque originalmente clasificados como naves de ataque rápido, los Skjolds ahora a menudo se denominan "corbetas de combate litorales", debido a su poderoso conjunto de combate. Esto refleja su propósito principal como plataformas rápidas de guerra anti-superficie. Para el combate de largo alcance, las unidades se basan en el misil de crucero antibuque Nytt Sjømals Missil (NSM) de KDA.6 El sistema consta de dos lanzadores cuádruples en la popa de la caseta, que se elevan para disparar y luego se retraen para mantener el RCS bajo. La salida del misil se ventila a través de una abertura en la popa del barco. Los misiles están equipados con una ojiva perforadora de semi-blindaje de espoleta multipropósito inteligente programable (PIMF) de 120 kg, guía de medio curso asistida por GPS con un buscador avanzado de imágenes infrarrojas (IIR) de doble banda para el reconocimiento automático del objetivo. El rango es c. 185km (100 millas náuticas). Su computadora de control de vuelo digital permite que el misil siga los complejos contornos de los fiordos antes de buscar su objetivo. Su buscador IIR detecta, clasifica y selecciona objetivos y, en su aproximación terminal, maniobra el misil al azar para derrotar las defensas cercanas. El programa de prueba y evaluación del NSM incluyó un primer disparo en el mar en octubre de 2012 y una prueba exitosa contra el buque objetivo Trondheim en junio de 2013.
Comunicaciones
Los Skjolds montan un sistema de comunicaciones de última generación integrado por el grupo alemán Aeromaritime. Diseñado para brindar una solución óptima en términos de rendimiento de comunicación y compacidad, incluye enlaces de radio HF, VHF y UHF, así como comunicaciones por satélite, y admite conectividad NATO Link 11 y 16. Desde mediados de 2014 en adelante, la clase se equipará con el sistema de comunicación por satélite SURFSAT-S de Thales, que incluye conexiones con las redes civiles de Inmarsat e Iridium, así como con satélites militares. El sistema de comunicaciones general permite a los miembros de la clase tener un medio seguro de compartir una imagen operativa general, apoyando así operaciones estrechamente entrelazadas.
Tripulación
Operar el Skjolds requiere mucho personal. Aunque el IMPS y el IBS proporcionan un nivel muy alto de automatización y hacen que el desempeño de las tareas a bordo sea preciso y fácil, el empleo cuidadosamente organizado de cada miembro de la tripulación es imperativo para supervisar y controlar los sistemas de la clase de manera efectiva. Inicialmente, los barcos fueron diseñados para una tripulación de dieciséis pero, después de las lecciones aprendidas del despliegue de Skjold en los Estados Unidos, se decidió aumentar esto a veintiuno.
En lo que respecta al alojamiento, hay un solo camarote para el oficial al mando; cuatro camarotes dobles para los demás oficiales; y camarotes de cuatro literas para los suboficiales y marineros. Los oficiales y los suboficiales comparten una sala de oficiales, mientras que los índices tienen su propio lío. Hay una cocina moderna, dos duchas y dos baños. Como no hay literas de repuesto disponibles, cualquier personal adicional debe dormir en literas improvisadas en la sala de oficiales o en el comedor de clasificaciones. La RNN está estudiando posibilidades para aumentar el número de tripulantes porque las operaciones duraderas de alta intensidad han demostrado ser muy desafiantes. El comandante sg Ståle Kasin, comandante del escuadrón Corvette de la Armada de Noruega, dijo que las posibles soluciones podrían ser la introducción de 'literas calientes' o un aumento del número de literas: 'Algunas de las cabañas ahora tienen dos literas, por lo que estamos buscando posibilidades para instalar un tercero. ”Durante las operaciones, la tripulación puede permanecer dentro de una 'ciudadela' nuclear-biológico-química que abarca los espacios interiores críticos, es decir, las habitaciones de la tripulación, la sala de operaciones y el puente.
A su regreso de Estados Unidos, el comandante Rune Andersen, el oficial al mando de Skjold, confirmó que las condiciones de vida y alojamiento eran bastante cómodas: “Los interiores son espaciosos y cómodos. Ella ha sido nuestro hogar durante trece meses sin problemas. Los camarotes brindan comodidad y privacidad. Producimos suficiente agua dulce para ducharnos y lavar la ropa, el nivel de ruido es bajo y la temperatura interior es agradable sin importar la temperatura que encuentre afuera. Se sentía tan cómoda en las aguas árticas como en el Caribe ".
Experiencia operacional
Los barcos de la clase Skjold han participado en una variedad de ejercicios y actividades. Todos los años participan en el ejercicio Flotex: un ejercicio noruego que se realiza cada noviembre; en Ejercicio Costas del Norte: ejercicio que tiene lugar en aguas danesas, finlandesas, alemanas o suecas durante el mes de septiembre; en la serie Joint Warrior frente a la costa oeste de Escocia y, cada dos años, en el ejercicio de respuesta en frío de la OTAN. Además de estas maniobras, los buques han estado participando en una variedad de ejercicios y operaciones nacionales más pequeños, que van desde el apoyo a la policía y la aduana, hasta el lanzamiento de misiles en vivo y ejercicios aéreos.Skjold (P960): Lanzado el 22 de septiembre de 1998, Skjold entró en servicio por primera vez en la RNN el 17 de abril de 1999. Inmediatamente comenzó un período de prueba intensivo que se centró en la compatibilidad electromagnética, la reducción de firmas, la velocidad y la navegación, así como la disposición general y el diseño. funcionalidad. Apenas tres días después de su entrega, se unió al Ejercicio Blue Game 1999 junto con otras naves de ataque rápido de Dinamarca, Alemania y Noruega. Aunque todavía no estaba equipado con sus armas y sistema de control de armas, era esencial para la RNN tratar de operar el barco como cualquier otro barco patrullero rápido. Durante el ejercicio, Skjold cruzó el Skagerrak seis veces, logrando una mejor velocidad promedio de más de 50 nudos. Una vez completado el ejercicio, navegó a Oslo para realizar manifestaciones ante el Jefe de Defensa, el Ministro de Defensa y varios políticos. Después de esto, navegó a su base de operaciones en Haakonsvern por primera vez. Aunque experimentó condiciones hasta Sea State 5, aún podía mantener velocidades de 40 a 50 nudos.
En agosto, KDA montó dos consolas multifunción SENIT CMS, después de lo cual Skjold navegó a Stavanger, donde se instaló un cañón Oto Melara de 76 mm / 62 Super Rapid. En esta configuración, el barco asistió a la Exposición DSEi-99 en Londres. Esto fue seguido por disparos de prueba con el arma a fines de septiembre. El año del Milenio comenzó con pruebas de clima frío en la zona de Tromsø y Skjervøy (Finnmark) hasta finales de febrero. A esto le siguieron más pruebas de disparo con el cañón principal para medir las tensiones en el casco y más pruebas exhaustivas de todos los sistemas y equipos del barco. Durante uno de estos ejercicios, Skjold aumentó su velocidad máxima a 59,8 nudos. La pistola se retiró al finalizar este período de prueba.
En marzo de 2000, el personal del Comando de Guerra Especial de la Armada de los EE. UU. Visitó el barco para evaluar si el diseño de alta velocidad tenía alguna relevancia para desarrollar conceptos de guerra centrados en la red, incluido el programa Littoral Combat Ship (LCS). Esto resultó en la firma de un acuerdo entre los gobiernos de Estados Unidos y Noruega para el arrendamiento de Skjold para un programa de demostración y evaluación de doce meses con los establecimientos de investigación de la Marina de los Estados Unidos.
Antes de su partida a los Estados Unidos, Skjold recibió una serie de ajustes en sus sistemas, incluidos nuevos equipos de navegación, radar, antena y satélite, así como un dispositivo para manejar botes inflables rígidos (RIB) del tipo de la Marina de los EE. UU. El cambio más obvio, sin embargo, fue un nuevo esquema de color. El barco se volvió a pintar en tonos más claros para reducir la temperatura de la superficie del casco mientras operaba en un clima más cálido. Bajo el mando del comandante Rune Andersen, Skjold partió de Bergen el 4 de septiembre de 2001. Tras hacer escala en las Islas Feroe y Reykjavik, se dirigió a lo largo de la costa oriental de Groenlandia hasta la aldea esquimal de Ammassalik. Luego pasó por Prince Christian Sound y llamó a Nanortalik y Cartwright, antes de llegar a Corner Brook en la costa este de Terranova. Desde aquí navegó a Halifax, Newport, Rhode Island y Nueva York antes de llegar a la Base Anfibia de la Marina de los EE. UU. En Little Creek, Virginia, su puerto base durante el próximo año, el 25 de septiembre. Aquí se convirtió en una unidad totalmente integrada del Escuadrón de Barcos Especiales Dos.
Skjold llevó a cabo un programa intensivo de ensayos mientras estaba en los Estados Unidos. Se utilizó para evaluar hasta qué punto una plataforma de alta velocidad del tipo que representaba la nave podría usarse como un `` nodo '' de primera línea en una guerra centrada en la red y si la conectividad mejorada podría permitir que estas naves asuman roles previamente negados a ellos. El programa incluyó amenazas simuladas de fuentes aéreas, superficiales y subterráneas; Fuerzas especiales y operaciones de vehículos no tripulados; y una gama de pruebas instrumentadas que abarcan el comportamiento en el mar, estructural y característico. Durante este tiempo, participó en una serie de ejercicios. Estos incluyeron las contramedidas de minas enfocadas en GOMEX 02 en el Golfo de México entre el 29 de noviembre y el 14 de diciembre; y JTFEX 02-1 con el John F Kennedy (CV-67) Carrier Battle Group. Asignada a la fuerza de oposición, según los informes, logró pasar desapercibida y atacar el portaaviones. Al finalizar, hizo varias escalas en el Caribe, realizando entrenamiento experimental con el Pelotón 4 SEALS de la Unidad de Guerra Especial Naval en la Estación Naval de los Estados Unidos Roosevelt Roads, Puerto Rico. Al regresar a Little Creek a fines de mayo de 2002, participó en el Experimento de Batalla de Flota (FBE-J) y los ejercicios del "Desafío del Milenio", seguidos de pruebas de firma de sensores aéreos y pruebas con una plataforma para reabastecimiento en el mar.
A mediados de agosto estaban en marcha los preparativos para el viaje de regreso de Skjold a Noruega. El viaje de regreso a casa vio escalas en Nueva York, Halifax, Cape Breton en Terranova, Labrador en Groenlandia, Reykjavik, Vestmannaeyar y las Islas Feroe. Llegó a Haakonsvern el 27 de septiembre de 2002. El despliegue estadounidense demostró la capacidad del barco para reconfigurarse rápidamente para misiones dispares, para defenderse en un entorno litoral y su idoneidad para operaciones especiales. Sin embargo, el alcance limitado del barco de 800 millas náuticas fue un inconveniente, en opinión de la Marina de los Estados Unidos.
La opinión de RNN fue más inequívocamente positiva. El comandante Andersen, el primer oficial al mando de Skjold, dijo: "Es extremadamente maniobrable y capaz de mantener altas velocidades en condiciones climáticas adversas. El barco ha cumplido con todos los requisitos establecidos por la Armada de Noruega antes de su diseño. Desde su puesta en servicio en abril de 1999, nos ha impresionado con su alto rendimiento y alta disponibilidad ".
Después de haber servido como banco de pruebas de la plataforma de preproducción durante más de cuatro años, durante los cuales navegó unas 85.000 millas náuticas con alta disponibilidad técnica, Skjold fue dado de baja temporalmente el 24 de junio de 2003. Regresó a Umoe Mandal para actualizarse a los estándares de producción finales. y actuar como plataforma de entrenamiento para las tripulaciones de las otras unidades. Fue entregada de nuevo el 29 de abril de 2013 y una de sus primeras visitas al extranjero la llevó a Rouen, Francia para la 'Armada de Liberté' en junio de 2013. Este viaje fue seguido en noviembre por el ejercicio Flotex 2013. Posteriormente, en 2014, Skjold participó en la serie Cold Response y en el ejercicio Visión Unificada de la OTAN 2014.
El camino a seguir
La clase Skjold es capaz de contribuir sustancialmente a una amplia gama de operaciones tanto en el litoral como en aguas azules. Aunque diseñadas para patrullar las aguas litorales de Noruega, las unidades ya han demostrado estar entre los activos más flexibles de la RNN. En particular, gracias a las comunicaciones y los conjuntos de sensores de última generación, pueden hacer una contribución significativa a las operaciones internacionales. Como lo demostró el despliegue de Skjold en los Estados Unidos, incluso los despliegues prolongados fuera del área pueden mantenerse y su velocidad máxima de 60 nudos podría resultar bastante útil para las operaciones de lucha contra la piratería de la UE o la OTAN. En resumen, Skjold y sus hermanas son combatientes de propósito general rápidos, poderosos e interoperables que serán útiles para una amplia gama de tareas.
El misil de ataque naval de Kongsberg está operativo en tierra y en el mar. Puede subir y bajar según el terreno cuando viaja por tierra.
Misil de ataque naval noruego (NSM)
El Kongsberg NSM entró en servicio con la Royal Norwegian Navy en 2012 y es empleado por sus barcos de misiles de clase SKJOLD y fragatas de clase FRIDTJOF NANSEN. El primer pedido de exportación se recibió de Polonia en 2008 para una versión del sistema de misiles de defensa costera para la Armada polaca, y se realizó un segundo pedido por lotes a fines de 2014. En 2015 se anunció que el acuerdo sobre la adquisición de submarinos entre Alemania y Noruega, Kongsberg señaló que: “Las autoridades noruegas anunciaron que la asociación estratégica para la adquisición de submarinos se expande para incluir el misil de ataque naval de Kongsberg (NSM). La cooperación implica un mayor desarrollo del misil y que la marina alemana tiene la intención de adquirir un número significativo de NSM para sus buques. Esto también permite una estrecha cooperación en el mantenimiento y la logística conjunta entre la armada alemana y noruega ”.
El NSM pesa 408 kg, viaja a alta velocidad subsónica, utiliza un sistema de navegación GPS / INS y tiene un buscador de imágenes infrarrojas (IIR) con reconocimiento automático de objetivos, la ojiva pesa 125 kg y su alcance operativo es de 185 km (el alcance depende en el perfil de vuelo). Se ha hecho hincapié en la reducción de firmas en la configuración del misil y esto es asistido por el buscador de IIR que es un sistema pasivo. También hay una versión lanzada desde el aire del arma conocida como Joint Strike Missile (JSM), que ha sido diseñada para encajar en las bahías internas del F-35 Joint Strike Fighter (JSF) que está adquiriendo Noruega. Se dice que Australia está interesada en el JSM para su futura flota F-35.
Los desarrollos futuros del NSM / JSM incluyen potencialmente una versión que se puede lanzar desde el MK 41 VLS y una variante lanzada desde un submarino. En términos de futuras oportunidades de exportación, Kongsberg ha estado trabajando para involucrarse en el programa OASuW de la Marina de los Estados Unidos. El NSM fue despedido del USS Coronado (LCS-4) en Point Mugu, California, en julio de 2014. La capacidad de ofrecer tanto NSM como JSM proporciona a Kongsberg un tremendo potencial de exportación, en particular la capacidad de lograr el transporte interno en el JSF. ampliar significativamente la base de usuarios potenciales.
No hay comentarios.:
Publicar un comentario